ABL JDBC Business Logic
Driver

Table of contents

0 o [Cot [0 4
L1 = o 1 2 = 4
[(0 1TV = T o T 1= 5
LT = o T 6

Getting Startedc.veii i 7
SyStem reqQUIFEMENTS ...cuiiieieiiecrer e e s s e s e s an e s e s e s e r e nnnanees 7
L0l PPt 8

LA L= S o T =T P 9
Y= | LU =] 0 o P 9
GEttiNg NeIP onieie i 9

ReferenCe Help ..vuieie e 10

ClIENT DAta ACCESS uiviririeieieiiiiiiiiaiarsssssssireesasasassssssasssnsasarsssssssnsnensnsnsnrens 10
D770 (0117 0 1= o | PP 10
0] = x o o 11
Database Meta Datacvuveiiiiiiiiii i e 12
Data Manipulationoeeieeiiriieir e e 13

BuSiNeSS LOGIC Calliveiiiiiiiieiei e e 14
Dynamic Business LOGIiC Callccoveiiiiiiiiiiiicinirr e 16
A = 17
[0 Tl =Tl o 18
01 1= | 24
UPate .vneeiiice e 24
D7), (PR 25
15 26
1T [T o 26
= o 31
(0 o = | (= PP 32
D[32

BUSINESS LOGIC 1uvuieiieiiiiiiiiiieri s s s s s s s s s s s s s n s a s asa s s s e nenss 33
DEPIOYMENT ..eeeeieiie e 33
0] o1 /o)1= R 34
1) (0T (=10 N 2 016 U] = 34

Procedure Meta Dataovoviiiiiiiiiiiiiiiiciii i s s s s s e e aanans 36
Parameter Meta Datavviiiiiiiiiiiiiiii s a 38

B W) =0 I d o Yl [39

1] 7= 0111 1L 40
1) 7= 1 = 11 1 40
Callable StatemMeENt . ..v v e 42
Select STAatEMENTiv i 45

NS]) =1 = 47
L@] I (/< o] u o] o PP 48
SQLWaAINING uitiiiiiiiee e e e e e e e 49
=) 1040 49
AUhENTICALION vvviiiiiiii s e e e a e eaes 50
TAUThENICAtION ..vviiiiiiii e 50
ClentPrinCipalceeieeeee e r e e s e s e e a e e 51

J N U 1= [0 1[0 T 7= L < 53

Anonymous Authenticationcoovoviiiii i 54

Database Authenticationcccoviiiiiiiii s 54
Table Authenticationcovveiiiiii 55
AUhOFIZAtioN ...veeece e 57
TAULhOFIZAtiON .uviveiie 57
BUSINESS Catalog ..ovuiveirieieiiei e e e 57
(7= 1 7= o o 58
Catalog Basecucuiiiiiiiiieie e 61
(@0 1 1o 18] =1 o o [T 65

File Catalog ..uvveniiriiiiiiie it 66
CoNfIQUIALION uuiieiiii e 67
| (o] g {To [UT =14 o] o PP 67
ICONfIGUIADIE .. 68
XML Configurationcceveeiiriiiiieiieies s s e e e e e e e eas 68
LOQGQING 1euieiniiiiiiiii e 69
o T [1< PSPPSR 69
[WoTa]\ F=T g =T 1< gl o T [<! 69
BUSINESS VIBW .viiiiiiiiiiiiiiiinis s s s s s s s s s s s s s s s s e s s an e naeas 70
View Meta Dataociviiiiiiin s 71
View Column Meta Dataccuviviiiiiiiinesr e a e 72
View Index Meta Datacc.ovveiiiiiiiiiiiiniisier s e s e e 73
BUFfered VIEW ...ce.ieie s r e a s e s 73

oo) o 1 74

Introduction

8] ABL JDBC

E'““ The standard interface that glues Progress Business Logic and Java.

ABL JDBC driver brings the power of Progress ABL to the Java world in a
standardized way. By leveraging your existing business logic the ABL
JDBC driver can expose it to powerful reporting engines or data
integration tools. This can help you to integrate versatile reporting
solutions inside your Progress ABL application or easily respond to
application and data integration requests without the pain of going to
complex application changes to support them.

acornit

Welcome

ABL IDBC driver brings the power of Progress ABL to the Java world in
a standardized way.

By leveraging your existing business logic the ABL JDBC driver can
expose it to powerful reporting engines or data integration tools. This
can help you to integrate versatile reporting solutions inside your
Progress ABL application or easily respond to application and data
integration requests without the pain of going to complex application
changes to support them.

http://www.acorn.ro

Features

Standard JDBC
interface

Benefits

The driver implements the version 4.1 of standardized
java database connectivity interface (JDBC).

Multi-tier layered
architecture

Built on top of Progress Application Server the driver
benefit from the proven scalability as well as other
security and connectivity features like: SSL encryption
and HTTP tunneling

Business logic
catalog

All business logic are exposed in a meta-data catalog
which offers detailed information about each registered
business logic procedures and views

Meta-data support

Detailed meta-data support is available not only for the
business logic but also for all connected databases:
tables, columns, indexes

Multiple database
support

Unlike other JDBC drivers this supports multiple
connected databases, all databases connected for the
Application Server shows as separate catalog - support
queries against tables from multiple databases

Single entry point

The single entry point for back-end business logic
facilitate security services like authentication,
authorization, audit.

How can be used

While the ABL JDBC is not a end-user tool that can be used on it's
own, it does provide a standard data access mechanism to your
existing Progress business logic for any Java based tool that supports

JDBC.

Reporting engine

While being a very powerful and productive language the Progress
ABL fall short of providing a valid reporting engine that can be
integrated in Progress applications. For Java there are already a great
number of enterprise grade reporting engines all of which supports
the JDBC database access and are able to produce pixel-perfect
documents that can be viewed, printed or exported in a variety of
formats; the graphical report designer available in most cases really
speed-up the report design process. Among some of the most used
open-source reporting engines that can be used we can name:
Pentaho, Jasper Soft, Birt (Eclipse's own reporting engine).

Data integration

In today's global market place the need for application and data
integration is more present than ever and continues to increase

everyday. Given the embedded nature of ABL, traditionally Progress
based applications offers very little integration options. This is why
very often when there is a need to access data from another
application (different RDBMS) or send data to it this involves
implementing specific data access interfaces on one or both of the
two ends. This is not only ineffective but also very difficult to
maintain and expand over time to keep up with new data integration
requirements. Using dedicated tools for data integration instead of
application customization can offer a very scalable and easy to
maintain solution while dramatically reducing the time and effort
required for the data integration projects. Some of the most widely
used open-source data integration tools on the Java market are:
Pentaho, Talend, Apatar.

Java graphical user interface

Use ABL JDBC driver to build application graphical user interface in
Java (desktop, web or smart phones), this will give you access to the
Progress business logic through the common JDBC interface which will
dramatically reduce the deployment effort - only one-time
deployment of the JDBC driver is required, subsequent changes on
the business logic does not need to be deployed as opposed to
regular Open Client application deployment.

What's new

Release notes

VerS|on 1.0 (3 Feb. 2011)
Business logic catalog (stored procedure)
* Database Meta-Data
* Prepared and Callable Statement

Version 1.1 (16 Feb. 2011)
* Dynamic ABL Query Syntax
* BREAK-BY support with Aggregate Functions (COUNT, SUM,
MIN, MAX, AVERAGE)
* Table and column alias support
= LIMIT/OFFSET add-on support (follows MYSQL
implementation)

Version 1.2 (01 Aug. 2011)
* SQL basic syntax support
* Low-level data access support (CRUD)
* Improved server-side support for exception/warning (SQL
Codes)
* Upgrade to version 4.1 of JDBC specification that comes
with Java 7

Version 2.0 (25 Feb. 2016)

This is a major version release due to breaking changes in the API
mainly following package name update but also extensions/changes
that were holding back for some time.
* Dynamic procedure call support (any 4gl procedure/function)
* Improved server-side authentication service (interface API
changes)
» Buffered data retrieval (pagination) for select statements
and stored procedures
= Extent fields support, either whole field as array or separate
extents
* Supports SSL and HTTP connection- AIA and new Pacific
Application Server
* Logging service
* Documentation update

System requirements

Server-side JDBC Helper

For the server-side ABL Helper component a Progress Application
Server product is required and because the implementation uses the
new Object Oriented features introduced in Progress ABL language
the minimum version required is 10.1C or greater, if there is any
interested in making it to work with earlier versions please send us a
feature request by email at contact@acorn.ro and we will take it into
consideration.

For best performance the operating mode of the serving Progress
Application Server should be set to 'state free' if possible, this is not
a requirement "per se" as the driver can connect to an Application
Server regardless of the session management operating mode used.

Client JDBC Driver

The ABL JDBC driver implements the JDBC 4.1 specification that was
included in Java 7.0 therefore Java Runtime Environment (JRE) 7.0 is
required.

Because the driver is using Progress© Open Client for connecting to
the Application Server the Progress© Java Open Client libraries are
required. The Java Open Client libraries can be found under "java"
folder of Progress© installation (DLC) as follows:

mailto:contact@acorn.ro?subject=abljdbc support

Core Open Client $DLC/java o4girt.jar
Library

Ecore Libraries $DLC/java/ext common.jar

(OE V10) commonj.sdo.jar
ecore.jar
ecore.change.jar
ecore.resources.jar
ecore.sdo.jar
ecore.xmi.jar

Ecore Libraries $DLC/java/ext common-2.2.3.jar

(OE V11) ecore-2.2.3.jar
ecore-change-2.2.3.jar
ecore-xmi-2.2.3.jar
tuscany-sdo-api-r2.1-1.1.1.jar
tuscany-sdo-impl-1.1.1.jar
tuscany-sdo-lib-1.1.1.jar
tuscany-sdo-tools-1.1.1.jar
xsd-2.2.3.jar

* SSL Libraries $DLC/java/ext certj.jar
cryptoj.jar
sslj.jar

* SSL Certificates $DLC/certs psccerts.jar

The version of Ecore libraries changed between OE 10.2B and OE 11,
make sure the right libraries are used to match the application server
version.

* For SSL enabled Application Servers the SSL support libraries are
required as well as the SSL certificates, if different SSL certificate is
used on the application server instead of the default certificate then
the custom certificate store can be specified as a connection
parameter and will be used instead of the default one (psccerts.jar).

License

License

The only component that need a license is the server side of the
business logic driver, the JDBC client driver has no deployment nor
run-time license requirement.

The license model used is per logical computer (server/workstation)
with no limitation on number of users neither named nor concurrent.

The understanding of the term logical computer - or processing
environment - as used in this licensing terms is that of a physical or
virtual processing environment as follows:

One Application Server serving multiple One Server license

clients

Multiple Application Servers running on the One Server license
same logical computer

Multiple logical computers (Virtual Machine) One Server license per
sharing the same hardware (physical Virtual Machine
computer)

Where to Buy

The only licensed component is the server-side one, no license is
required on the client and there is no restriction set on the nhumber of
concurrent/named connections.

Technology Partnership

Apart volume license discount we also offer the option of unrestricted
access model for ISV/VAR under a technology partnership agreement,
for more details contact us directly.

Acomn IT

48A Florilor, Floresti 407280
Cluj, Romania

Tel: +40 740 036 212
contact@acorm.ro

Evaluation

Trial
A trial version of ABL JDBC is available for an evaluation period of
three months. The trial version offers the same functionality as the

registered product and it does require an evaluation license to be
issued.

To request a evaluation license send us an email.
Getting help

Help

You can find the most up to date version of this manual on our web-site
for on-line browsing here.

Support

For each implementation we can offer tailored support and training to
make sure you get everything up and running on your site and your IT
staff reach a level of self-sufficiency that makes them comfortable with
the product.

mailto:contact@acorn.ro?subject=abljdbc licensing
mailto:contact@acorn.ro?subject=abljdbc evaluation license request
http://www.acorn.ro/help/abljdbc/

We also offer email support and access to defect-tracking system for
clients under maintenance contracts.

We can also offer consulting services for business intelligence, data
integration, enterprise data warehouse projects.

Client Data Access

This section covers the Java client-side JDBC access to the ABL
business logic.

All that you need to know about how to make a connection to the
Application Server, what features are supported by the JDBC driver as
well as the Data Manipulation Language support and syntax.

Deployment

For database access most Java client applications uses JDBC interface,
this is why the ABL JDBC driver that allows connecting to the
application business logic need to be deployed on the client side, for
that the 'JIDBC Driver' component need to be selected during
installation process.

The driver specific implementation is packed in a single jar file,
however due to the fact that Progress Open Client interface is used for
connecting to the Progress Application Server the driver has a
dependency on Progress Open Client libraries.

In order to be able to use the JDBC driver to make the connection to
the back-end Progress Application Server the driver's own JAR library
as well as the libraries part of Progress Open Client need to be added
to the CLASSPATH. One option will be to set the system wide
CLASSPATH variable but most of the Java reporting engines and
application servers does override this system default and provides
other options to deploy JDBC drivers like having special library folders
for JDBC drivers or having an option to adjust the application specific
CLASSPATH by adding external JAR libraries — for instance in Jasper
report designer (iReport) the CLASSPATH can be adjusted through
Options->Classpath menu entry.

The ABL JDBC driver JAR file is named abljdbc-x.x.x.jar - where
"x.x.x" is the product version number - and can be found in
“<InstallPath>/jdbc”

For Progress Open Client the following JAR libraries need to be added
to the CLASSPATH:

mailto:contact@acorn.ro?subject=ABL JDBC support request

Core Open Client
Library

Ecore Libraries
(OE V10)

Ecore Libraries
(OE V11)

* SSL Libraries

$DLC/java

$DLC/java/ext

$DLC/java/ext

$DLC/java/ext

* SSL Certificates $DLC/certs

o4girt.jar

common.jar
commonj.sdo.jar
ecore.jar
ecore.change.jar
ecore.resources.jar
ecore.sdo.jar
ecore.xmi.jar

common-2.2.3.jar
ecore-2.2.3.jar
ecore-change-2.2.3.jar
ecore-xmi-2.2.3.jar
tuscany-sdo-api-r2.1-1.1.1.jar
tuscany-sdo-impl-1.1.1.jar
tuscany-sdo-lib-1.1.1.jar
tuscany-sdo-tools-1.1.1.jar
xsd-2.2.3.jar

certj.jar

cryptoj.jar

sslj.jar

psccerts.jar

No Progress Open Client libraries are distributed as part of the ABL
JDBC Driver installation kit, those are part of OpenEdge products and

licensed by Progress Software Corporation.

Connection

From a Java client application in order to establish a connection to
the data source using JDBC there are two methods that can be used:

DriverManager

DataSource

A fully implemented which can connect an application to a
data source, which is specified by an URL; the driver
manager will take care of loading the required JDBC driver

(for JDBC 4.0 drivers).

An interface that allows details about the underlying data
source to be transparent for the application (it can be
registered with JNDI naming service).

Most reporting engines or data integration tools support both types
of connections and ABL JDBC driver can be used with any of the two;
being a JDBC 4.1 driver it does not have to be registered before using

it, this is handled by the driver manager.

To make a connection using ABL JDBC driver the following information

is required:

Class Name

ro.acorn.jdbc.ABLDriver

Connect URL

jdbc:abl:<server>:<port>[:<name>] [;<property>=value]...

<server>

<port>

<hame>

The name or address of the server that hosts the Progress
Application Server to connect to.

The port number of the Progress Application Server for direct
connection or the port number of the Progress Name Server on
which the Application Server is registered.

Optional parameter when connecting through a Name Server the
name or the Progress Application Server is required.

Optionally a number of driver specific properties can be specified
either by setting it in the property info structure passed to connect
method or directly adding them in the connection URL as pairs or
property name equals value separated by semicolon.

The complete list of driver specific properties that can be set for a
connection can be found in following table along with their default

values.

Option Default Description

appInfo Application Server connection information.

catalog Default catalog to be used by connection.

fetchSize 500 Default statement fetch size, for large result set
the records retrieval will be paged.

http FALSE Use HTTP protocol - AIA or new PAS.

logFile Log file to use for the connection.

logLevel Log level to use for current connection, valid
options: ALL, TRACE, DEBUG, INFO, WARN, ERROR,
FATAL

sslEncryption |FALSE Use SSL encryption, SSL certificate support is not
available for the moment.

sslStore psccerts.jar | The store for SSL certificates.

stateFree TRUE Connect to a STATE-FREE Application Server, this is
the recommended session management model -
the driver will auto-set this property if the session
management model does not match the value
specified.

Database Meta Data

Database Meta Data is fully supported by the ABL JDBC driver but
keep in mind that this is the 4GL database engine not the SQL one
that is exposed by the Progress JDBC drivers.

Catalog: & ¢ » CebEE Q, ¢ W W
Dbjects \l SQ_L\ H\bemate\
: TlmefDateFunctlons\Keywords\
Metadata \ Status \l\ Catalogs \ Table Types \l\ Data Types \ Mureric Functions \l\ String Functions \l\ System Functions \l\
Property Mame
. B PROCEDURE JDBC Driver CLASSPATH Chworkl\projects\abl-jdbc\abl-jdbc\abljdbe jarn Cwerk\projects\abl-jdbc\abl-jdbc\dephcy -
o[aliCustomerOrder | getURL jdbc:abllocalhost:50600;appInfo=;sslEncryption="false; catalog=;stateFree=false
: itemSales isReadOnly false e
testDate getDriverMame OpenEdge Application Server Jdbc [
=0 topCustomer getDatabaseProductMame OpenEdge
| ®=-03 UDT supportsCatalogsInTableDefinitions false
E}B sports supportsSchemasInTableDefinitions false
D SYSTEM TAELE getCatalogSeparator .
E}B TABLE storesMixedCaseldentifiers false
[Customer storesUpperCaseldentifiers false
D Invoice getlUserMame
D Trem supportsSchemasinDataManipulation false
D Local-Default supportsCatalogsinDataManipulation true
D Order getldentifierQuoteString "
=[] Order-Line getDatabaseProductVersion 1024
Ref-Call getDriverVersion 11
] Salesrep getDatabaseMajorVersion 10
“-[State supportsStoredProcedures true
E-C3 VIEW supportsSavepoints false
[-C3 PROCEDURE getCatalogTerm database
B-C3 ubT getSchemaTerm owner
getProcedureTerm procedure L
ProcedureCalls true =i
0|
fabl 1.1
Catalogs Each connected database is listed as a catalog, the logical
name.
Schemas There are no multiple schemas in a Progress database, as
H n n H
seen by the 4GL engine, always only the "PUB" schema is
listed.
Tables All database tables are listed under corresponding catalog;

detailed information for fields and indexes.

System Tables || All Progress system meta-data tables are listed.

Views All views defined are listed on corresponding catalog but
those are SQL objects that can't be accessed using regular
ABL.

Procedures Driver specific business logic services, for each catalog all

procedures registered for the catalog are listed; detailed
information provided for procedure parameters and
returning result set(s).

Data Manipulation

Data Manipulation language supported currently by the ABL JDBC
Driver is a variant of the Progress ABL language, this is because of
the aim of being more easily to use by the targeted Progress ABL

developers.

There are two options to access data from the underlying databases
when using ABL JDBC driver:

o The Business Logic "CALL" statement

This is actually the standard SQL stored procedure call statement.
While Progress RDBMS does not support stored procedures in the
regular 4GL database engine most of the application business logic
can be exposed as a 'stored procedure' pretty much like a service in
a Service Oriented Architecture.

The Business Catalog server-side component take care of business
logic stored procedures registration, it can provide meta-data
information about parameters that need to be supplied as well as
the result set(s) returned and it can dispatch each 'call' request to
the proper business logic service.

Using this interface means the data is not directly accessed from the
underlying database(s) but through the business logic services that
expose the data in a way that make most sense for the business as
opposed to the somehow cryptic 3NF form internal database
structure.

The business logic call statement can return multiple result sets
(dataset).

o The low level data manipulation statements (CRUD).

This allows for direct data access to the underlying database(s)
using low level CRUD data access statements using either ABL or

SQL syntax.

Business Logic Call

The most important feature of the ABL JDBC driver is the possibility
to abstract the database internal structure from the Java client
application by exposing the application business logic as services in a
way that can be seen very similar to the stored procedures available
in other RDBMS. However, in this case the business logic is hosted in
an application server instead of directly in the database itself to keep
a strict separation between the business logic layer and the
persistence layer.

The syntax used to call a business logic 'stored procedure' through
ABL IDBC is.

{ CALL | EXEC }
[catalog .] [procedure]
[([parameter] [, parameter]...) 1]

{ CALL | EXEC }

While CALL seems the most used, EXEC is used by Microsoft SQL
Server, any of the three keywords can be used.

[catalog .] [procedure]

The name of the procedure can be prepended with the catalog name,
if no catalog is specified then the current catalog selected for the
connection will be used. Each business logic service is registered to
a catalog (database), if the procedure is not found in respective
catalog a syntax error occurs.

More information about the business services available in the
business catalog as well as details about parameters and returned
result set(s) can be found using the database meta data
functionality.

The following statement call a business logic service registered on
the CRM catalog that takes no input parameters and returns all open
complains that have the response due date passed.

CALL CRM.getComplainsWithDateDue

([parameter] [, parameter]...)

A business logic service can take any number of input parameters
that can be mandatory or optional. The parameter's order and data
type are important, if the business logic service does not validate
the input parameters send a syntax error might be raised.

parameter: { number [. number] | true | false | " string
"2}

Each parameter can be a numeric value - either integer or decimal, a
logical value - true or false, or a quoted string. Date and date-time
values can be sent as quoted string values using the ISO
representation format to be correctly interpreted as a date value.

The following statement call a business logic service registered on
the SPORTS catalog that takes the item number and order date as
input parameters and returns all orders made on that day for
selected item.

CALL SPORT.getItemOrders (12, "1998-11-23")

Dynamic Business Logic Call

While exposing business logic using the 'stored procedure' interface
through the business catalog is still the recommended way because
of the discovery feature of the meta-data information, sometimes it
might be more convenient to call directly the 4GL procedures of the
application instead of wrapping that through a 'stored procedure’.

The syntax used to call a 4GL business logic procedure through ABL
JDBC is.

RUN
"[path / 1* [procedure.p 1"
[([parameter] [, parameter]...)]

While the RUN syntax was used before as an alternative to CALL or
EXEC when calling 'stored procedures' the keyword is now used to
directly call any 4GL procedure without having the need to create a
proxy 'stored procedure' and have that registered in the business
catalog.

"[path / 1* [procedure.p]"

The 4GL external procedure name need to be available in PROPATH,
relative path can be used if needed - with slash as path separator -
and the full path name should be quoted.

Since there is no stored procedure defined, details about parameters
and returned result set(s) are not available through the database
meta data.

The following statement call a business logic procedure that takes
no input parameters and returns all customers on credit hold in a
single result set (temp-table).

RUN "crm/getCustomersOnCreditHold.p" ([out.table] ?)

([parameter] [, parameter]...)

A business logic service can take any number of input parameters
that can be mandatory or optional. The parameter's order and data
type are important, if the business logic service does not validate

ABL

the input parameters sent a syntax error might be raised.

parameter: [direction . data typel]? value

Because the business logic procedure is called dynamically the
direction and data type of parameters sometimes is required to be
specified, this is mostly true for output/input-output parameters
when the data type can't be inferred from the parameter value.

direction: in | inout | out

Parameter direction simply matches the options available for passing
parameters in 4GL, just using a shorter version but the mapping is
self-explanatory.

data type: 4GL primitive data type | table | dataset

The data type can be any 4GL primitive data type, table for table-
handle parameters and dataset for dataset-handle parameter. Since
the most complex data structure returned through JDBC is the
equivalent of a 4GL dataset there can either be only one output
dataset parameter or one or more output table parameters.

value: { number [. number] | true | false | " string " |

2}

Each parameter value can be numeric - either integer or decimal,
logical - true or false, a quoted string or null (?). Date and date-time
values can be sent as quoted string values using the ISO
representation format to be correctly interpreted as a date value.

For output parameters specify null (?) as value, when using a
CallableStatement question mark (?) must be used as value place-
holder for every parameter and subsequently use set respectively
registerOutputParameter methods of the CallableStatement.

The following statement call a business logic procedure that takes
the item number and order date as input parameters and returns all
orders made on that day for selected item including the
corresponding order lines in a single dataset.

RUN getItemOrders (12, "1998-11-23", [out.dataset] ?)

Low level ABL Data Manipulation Language statements supports all
CRUD (create, read, update, delete) operations against connected
database(s) using a syntax very close to the ABL equivalent in order
to be more comfortable for developers that use the Progress ABL as
the main development language.

https://docs.oracle.com/javase/6/docs/api/java/sql/CallableStatement.html

The ABL select statement is supporting almost all options available
on a native ABL static FOR EACH statement - including break-by and
accumulate functions - and add-up some functionality like limiting
the number of records retrieved and option to specify a starting
offset.

For Each

The syntax supported by the ABL JDBC driver for dynamic data
retrieval directly from the underlying database(s) is an extended
version of plain Progress© ABL FOR statement.

FOR EACH recordPhrase
[, { EACH | FIRST | LAST } recordPhrase]...
[BREAK]
[BY orderField [DESCENDING] J...
[LIMIT { offset, limit | limit [OFFSET
offset] }]

EACH

Retrieve all records from the table that meets the criteria, this is
mandatory for the first record phrase specified for the select
statement. Achieving the same functionality that FIRST or LAST
options provides can be done by using LIMIT 1 option accompanied
by the DESCENDING order-by option (for LAST).

For instance to select the first customer record by customer name
the following statement can be used.

FOR EACH Customer BY Name LIMIT 1

FIRST

Retrieve only the first record from the table that meets the criteria,
this can be used for subsequent record phrases specified for the
select statement.

FOR EACH Customer, FIRST Order OF Customer

LAST

Retrieve only the last record from the table that meets the criteria,
this can be used for subsequent record phrases specified for the
select statement.

The following statement retrieves all customers and the last order
made by each of them, note that customers that do not have orders
are exempted from the result set in this case (see OUTER-JOIN
options).

FOR EACH Customer, LAST Order OF Customer BY OrderDate

[EACH | FIRST | LAST] recordPhrase

Specifies the tables to retrieve data from, EACH option must be used
for the first table while for the subsequent tables specified any of
the three options are valid.

table [AS alias]
[FIELDS (* | { field | aggregate}...)
| EXCEPT (field...)]
[LEFT] OUTER-JOIN]
OF parent]
WHERE criteria]
USE-INDEX index]

[
[
[
[

table [AS alias]

The name of the table from which the records are to be retrieved,
this can be prepended with the database 'catalog' name if exists in
more than one database; queries across tables from multiple
databases are supported as in regular ABL.

Optionally the table name can be aliased with a shorter name to
save typing very long names in subsequent where clause or when
query need to be made on a hierarchical self-referenced table; if an
alias is specified for a given table then the alias must be used
instead of the table name in WHERE criteria clause as well as in BY
order options. The alias nhames used must be unique for the
statement.

The following statement retrieves all customer's complaints where
the customer retention 'silo' has a separate database.

FOR EACH Sports.Customer AS c,
EACH Crm.Complaint AS d
WHERE d.CustNum EQ c.CustNum

The following statement retrieves all follow-up calls from the self-
referencing RefCall table including the date and message of the
referenced call.

FOR EACH RefCall AS c,

EACH RefCall AS p FIELDS (CallDate AS ParentDate, Txt AS
ParentTxt)

WHERE p.CallNum EQ c.CallNum

FIELDS (* | { { field | field[extent] | aggregate} [AS
alias 1} [, ... 1)

The FIELDS option specifies which fields to be retrieved from each
table used in select statement, if no fields are specified then all
fields from the table are retrieved in the result set - specifying

"*!' (asterisk) as field selection also selects all fields from the table.

Extent fields can be either selected as an array (please note not all
SQL clients might be able to handle the java.sgl.Array fields)
when all you have to specify is the field name, or as individual
extents using the square bracket notation.

For group-by select statements that use the BREAK option the field
list specified for the FIELDS option can take an aggregate function
attached. The aggregate functions available are: COUNT, SUM
(TOTAL), AVERAGE (AVG), MINIMUM (MIN), MAXIMUM (MAX).

For all fields used in FIELDS phrase an alias can be used to make the
column name more readable in the result set, also this can be used
when fields with the same name from different tables are required
since only one column with a given name can exist in the result set.

As opposed to the table name aliasing where the alias need to be

used for referencing the table in subsequent WHERE clause and BY
order list, the column alias can not be used instead of the column

name for referencing it in WHERE clause or BY order list.

The following statement retrieves the number of orders and most
recent order date grouped by order status.

FOR EACH Order

FIELDS (OrderStatus, COUNT(*) AS Orders, MAX (OrderDate) AS
LastOrder)

BREAK BY OrderStatus

The following statement can be used to get the order status as well
as the order line status when the field name is the same in both
tables.

FOR EACH Order FIELDS (Status AS OrderStatus),
EACH OrderLine FIELDS (Status AS LineStatus) OF Order

https://docs.oracle.com/javase/6/docs/api/java/sql/Array.html

Note: Specifying fields that do not exist in the table for the
FIELD list is considered a syntax error and no result set is
returned - an SQLException is thrown; this applies whether an
aggregate function is specified for the field or not.

When no FIELDS list is specified for a table then all fields from
that table that were already added to the result set from
previous tables are simply ignored and will be missing from the
result set, this is not considered an error.

EXCEPT (field [, ... 1)

The EXCEPT option can be used when all but a small number of
fields are to be retrieved from the table, as an alternative to specify
a longer field selection list using FIELDS option.

The following statement retrieves all fields from the order tables
except the customer number and the instructions as well as the
customer name which is aliased to 'Customer'.

FOR EACH Customer FIELDS (Name as Customer),
EACH Order EXCEPT (CustNum, Instructions) OF Customer

Note: Specifying fields that do not exist in the table for the
EXCEPT list is not considered a syntax error.

[LEFT] OUTER-JOIN

Specify a outer join between the current table and one of the tables
specified in previously record phrases of the select statement. See
your current Progress documentation for more information and/or
specific notes.

OF parent

Specify a implicit join between the current table and one of the
tables specified in previously record phrases of the select statement,
meaning there is no need to specify the join using a regular WHERE
clause but let the Progress AVM infer that join clause. See your
current Progress documentation for more information and/or specific
notes.

If the referenced table was aliased then the alias should be used
instead of the table name.

FOR EACH Customer AS c,
EACH Order OUTER-JOIN OF c

WHERE criteria

Specify the selection criteria used while selecting records. Although
all selection criteria can be set in the record phrase of the last table
used in select it is recommended to specify table specific selection
criteria in the table's own record phrase for performance
considerations.

USE-INDEX index

Specify explicitly the index to be used while selecting records. See
your current Progress documentation for more information and/or
specific notes.

The following statement will retrieve all customer records ordered by
sales representative.

FOR EACH Customer USE-INDEX SalesRep

Note: Although functionally equivalent as specifying a number of
order BY clauses the fields of the index specified by USE-INDEX
option will not be considered by the BREAK option.

BREAK

Can only be used if at least one BY option is specified and the result
will be that the result set will only contain a single record for the
group selection, this is functionally equivalent to the SQL "GROUP
BY" statement.

When used no other fields beside those listed in the BY list can be
specified in the FIELDS list unless having an aggregate function
attached.

This is often used together with aggregate functions on field
selections to obtain aggregated field values over a group of records
but it can also be used to get distinct group values.

The following statement retrieves the total number of customers per
country together with the average account balance.

FOR EACH Customer FIELDS (Country, COUNT (*), AVG(Balance)) BREAK
BY Country

Note: Although using the same syntax as in regular ABL open
query statement the BREAK option has a somehow different
functionality adapted to the result-set based data retrieval of the
dynamic select statement.

BY orderField [DESCENDING]

Specify the order in which the records are to be returned, the
DESCENDING option sorts the records in descending order. The
orderField expression can be just the field name if the field can be
unique identified for the tables used in select clause or it can be
pre-pended with the table name or alias if specified, see the record
phrase section for more details about table aliasing.

LIMIT {offset, limit | limit OFFSET offset}

The LIMIT clause can be used to constrain the number of records
retrieved by the select statement. The LIMIT option can take one or
two numeric arguments both of which needs to be non-negative
integer constants.

The one argument only syntax let you limit the number of rows
returned starting with the first record that meets selection criteria.

The following statement will return all customers and their orders
but limit the number of records in returning result set to ten;
depending on the data in the tables those records can be orders of
only one customer or more, it does not returns all orders for the first
ten customers.

FOR EACH Customer, EACH Order OF Customer LIMIT 10

For the two arguments option there are two different syntax format
that are allowed both of them does the same thing by limiting the
number of records returned in the result set but starting from the
'offset’ record instead of first record that meets the select criteria.
The offset is a zero-based index value meaning that the offset of
the first record is 0 (not 1), if the offset is greater than the number
of records that meets the selection criteria no record is returned.

The following statements are functionally equivalent, both returns
ten records starting from the fifth position - because the offset is
zero based this actually means the result set will include records

from 6 to 15.

FOR EACH Customer, EACH Order OF Customer LIMIT 5, 10

FOR EACH Customer, EACH Order OF Customer LIMIT 10 OFFSET 5

To return all records starting from a given offset position specify
zero for the LIMIT value, the following statement will return all
records that meet select criteria starting from fifth position to the
end.

FOR EACH Customer, EACH Order OF Customer LIMIT 5, O

FOR EACH Customer, EACH Order OF Customer LIMIT 0 OFFSET 5

Create

Update

The syntax supported by the ABL JDBC driver for inserting new
records directly into the underlying database(s) is using a
combination between regular Progress© ABL CREATE and ASSIGN
statements.

CREATE tableName
ASSIGN fieldName = value [[,] fieldName = value
...

The following statement creates a new record into the State table.

CREATE State
ASSIGN State = 'CJ',
Statename = 'Cluj’',
Region = 'NW'
Notes:

o Automatic data-type conversion does occur if possible - setting a
character field to a numeric value will result in field having the
string representation of the value. If data-type conversion fails
the transaction is rolled-back and an exception is raised.

o If no CREATE privilege exists on the table or unique constraints is
violated the transaction is rolled-back and an exception is raised.

o CREATE/WRITE triggers does fire as for regular ABL.

No functions are supported in field assignment, only scalar values.

o The comma between fields assignment is optional but used for
'readability’.

O

The syntax supported by the ABL JDBC driver for updating existing
records directly into the underlying database(s) is using a
combination between SQL UPDATE and regular Progress© ABL
ASSIGN statements.

UPDATE tableName
ASSIGN fieldName = value [[,] fieldName = value

...
[WHERE criteria |

Because of the result-set nature of SQL UPDATE and the sequential
record-processing of the Progress ABL the functionality is
implemented by simply using ASSIGN statement inside of data
retrieval block (FOR EACH) - records are updated one by one inside
the retrieval block.

The following statement updates the department code of all
employees from Marketing department (code '300') and transfer them
to the Sales department (code '400').

UPDATE Employee

ASSIGN DeptCode = '400'
WHERE DeptCode = '300'
Notes:

o Automatic data-type conversion does occur if possible - setting a
character field to a numeric value will result in field having the
string representation of the value. If data-type conversion fails
the transaction is rolled-back and an exception is raised.

o If no WRITE privilege exists on the table or unique constraints is
violated the transaction is rolled-back and an exception is raised.

o If a record that meets the selection criteria is locked by some
other user the transaction is rolled-back and an exception is
raised. If selection criteria leads to a full table scan (WHOLE-
INDEX) the record lock is only attempted for the records that
meets the selection criteria.

o WRITE triggers does fire as for regular ABL.

No functions are supported in field assignment, only scalar values.

o The comma between fields assignment is optional but used for
'readability’.

o

Delete

DELETE tableName
[WHERE criteria]

Because of the result-set nature of SQL DELETE and the sequential
record-processing of the Progress ABL the functionality is
implemented by simply using ABL DELETE statement inside of data
retrieval block (FOR EACH) - records are deleted one by one inside
the retrieval block.

The following statement deletes all employees from Marketing
department (code '300').

DELETE Employee
WHERE DeptCode = '300'

SQL

Select

Notes:

o

If no DELETE privilege exists on the table or validation expression
evaluate to false the transaction is rolled-back and an exception
is raised.

If a record that meets the selection criteria is locked by some
other user the transaction is rolled-back and an exception is
raised. If selection criteria leads to a full table scan (WHOLE-
INDEX) the record lock is only attempted for the records that
meets the selection criteria.

DELETE triggers does fire as for regular ABL.

Low level SQL Data Manipulation Language statements supports all
CRUD (create, read, update, delete) operations against connected
database(s) using a basic SQL syntax to accommodate developers
more comfortable with the standard SQL language.

Even if the SQL language is used in that case the data access is still
done through the ABL database engine therefore some notable facts
need to be considered:

@)

not all SQL functionality is implemented (some of the most
notable ones that are missing for the moment are: the IN
construct in SELECT statement, functions support in field
assignments)

transactions can't span multiple statements, if more statements
need to be part of the same transaction those can be executed
together as a batch through a single call

table triggers and validation expression does apply (same as for
regular ABL statements)

for select statements no cost-based optimizer is used but the
regular run-time index selection same as for ABL dynamic queries
- update statistics is not required nor does affect queries
performance in any way.

The SQL syntax supported by the ABL JDBC driver for dynamic data
retrieval directly from the underlying database(s) is a limited
implementation of SQL-92 syntax.

SELECT fieldPhrase
FROM tablePhrase [, tablePhrase]...
[WHERE criteria]
[BREAK]
[BY orderField [DESC | DESCENDING] J...
[LIMIT { offset, limit | limit [OFFSET
offset] }]

fieldPhrase

* | { { field | field[extent] | aggregate} [AS
alias 1}y [, ..]

The field phrase specifies which fields to be retrieved from tables
used in select statement. Field phrase is mandatory for SQL
statement - specifying '*' (asterisk) as field selection selects all
fields from all tables used in select.

Specifying the table name is mandatory for each field of the field
phrase - exception is allowed only when there is a single table used
in select; if the table name was aliased then the table alias can be
used instead.

Selecting all fields from one of the tables used in SELECT statement
can be accomplish by simply specifying 'table.*' in the field selection
phrase.

Extent fields can be either selected as an array (please note not all
SQL clients might be able to handle the java.sgl.Array fields)
when all you have to specify is the field name, or as individual
extents using the square bracket notation.

The following statement retrieves all order information and the
customer name of all orders.

SELECT o.*, c.Name AS Customer
FROM Order AS o, Customer AS c
WHERE c.CustNum = o.CustNum

For group-by select statements that use the BREAK option the fields
list specified in the field phrase can take an aggregate function
attached. The aggregate functions available are: COUNT, SUM
(TOTAL), AVERAGE (AVG), MINIMUM (MIN), MAXIMUM (MAX).

For both plain fields or aggregates used in field phrase an alias can
be used to make the column name more readable in the result set,
also this can be used when fields with the same name from different
tables are required since only one column with a given name can
exist in the result set.

https://docs.oracle.com/javase/6/docs/api/java/sql/Array.html

As opposed to the table name aliasing where the alias need to be

used for referencing the table in subsequent WHERE clause and BY
order list, the column alias can not be used instead of the column

name for referencing it in WHERE clause or BY order list.

The following statement retrieves the number of orders and most
recent order date grouped by order status.

SELECT o.0OrderStatus, COUNT (*) AS Orders,
MAX (0.OrderDate) AS LastOrder
FROM Order AS o
BREAK BY o.OrderStatus

The following statement can be used to get the order status as well
as the order line status when the field name is the same in both
tables.

SELECT o.Status AS OrderStatus, 1l.Status AS LineStatus
FROM Order AS o, OrderLine AS 1
WHERE 1.0rderNum = o.OrderNum

Note: Specifying fields that do not exist in the table for the field
phrase is considered a syntax error and no result set is returned -
an SQLException is thrown; this applies whether an aggregate
function is specified for the field or not.

tablePhrase

table [AS alias]
[[INNER | LEFT | RIGHT] JOIN parentTable ON
criteria]

Specifies the tables to retrieve data from with optional joining
criteria.

table [AS alias]

The name of the table from which the records are to be retrieved,
this can be prepended with the database 'catalog' name if exists in
more than one database; queries across tables from multiple
databases are supported as in regular ABL.

Optionally the table name can be aliased with a shorter name to
save typing very long names in subsequent where clause or when
query need to be made on a hierarchical self-referenced table; if an
alias is specified for a given table then the alias must be used
instead of the table name in WHERE criteria clause as well as in BY
order options. The alias names used must be unique for the
statement.

The following statement retrieves all customer's complaints where
the customer retention 'silo' has a separate database.

SELECT *
FROM Sports.Customer AS cC
JOIN Crm.Complaint AS d
ON d.CustNum = c.CustNum

The following statement retrieves all follow-up calls from the self-
referencing RefCall table including the date and message of the
referenced call.

SELECT c.*, p.CallDate AS ParentDate, p.Txt AS ParentTxt
FROM RefCall AS ¢, RefCall AS p
WHERE p.CallNum = c.CallNum

[INNER | LEFT | RIGHT] JOIN parentTable ON criteria

Specify a join between the current table and the table specified in
previous record phrase of the select statement. If not specified the
join mode is implied as being inner join, full outer join is not
supported.

Normally criteria specified on table join is a series of equality
conditions between fields that define the relation between the two
tables, however for performance considerations additional filter
conditions on the joined table (child table) can also be specified on
the join criteria instead of being added in the global where clause.

The following statement retrieves all customer's orders filtering only
those of a particular sales representative.

SELECT *
FROM Customer AS c
JOIN Order AS o
ON o.CustNum = c.CustNum AND o.SalesRep = "HXM"

WHERE criteria

Specify the selection criteria used while selecting records.

BREAK

Can only be used if at least one BY option is specified and the result
will be that the result set will only contain a single record for the
group selection, this is functionally equivalent to the SQL "GROUP
BY" statement.

When used no other fields beside those listed in the BY list can be
specified in the FIELDS list unless having an aggregate function
attached.

This is often used together with aggregate functions on field
selections to obtain aggregated field values over a group of records
but it can also be used to get distinct group values.

The following statement retrieves the total number of customers per
country together with the average account balance.

SELECT Country, COUNT (*), AVG(Balance) FROM Customer BREAK BY
Country

BY orderField [DESC | DESCENDING]

Specify the order in which the records are to be returned, the
DESCENDING option sorts the records in descending order. The
orderField expression can be just the field name if the field can be
unique identified for the tables used in select clause or it can be
pre-pended with the table name or alias if specified, see the record
phrase section for more details about table aliasing.

LIMIT {offset, limit | limit OFFSET offset}

The LIMIT clause can be used to constrain the number of records
retrieved by the select statement. The LIMIT option can take one or
two numeric arguments both of which needs to be non-negative
integer constants.

The one argument only syntax let you limit the number of rows
returned starting with the first record that meets selection criteria.

The following statement will return all customers and their orders
but limit the number of records in returning result set to ten;
depending on the data in the tables those records can be orders of
only one customer or more, it does not returns all orders for the first
ten customers.

SELECT * FROM Customer AS c, Order AS o WHERE o.CustNum =
c.CustNum LIMIT 10

For the two arguments option there are two different syntax format
that are allowed both of them does the same thing by limiting the
number of records returned in the result set but starting from the
'‘offset’ record instead of first record that meets the select criteria.
The offset is a zero-based index value meaning that the offset of
the first record is 0 (not 1), if the offset is greater than the number
of records that meets the selection criteria no record is returned.

The following statements are functionally equivalent, both returns
ten records starting from the fifth position - because the offset is

Insert

zero based this actually means the result set will include records
from 6 to 15.

SELECT * FROM Customer AS c,
WHERE o.CustNum

Order AS o
LIMIT 5,

c.CustNum 10

SELECT * FROM Customer AS c,
WHERE o.CustNum

Order AS o
c.CustNum LIMIT 10 OFFSET 5

To return all records starting from a given offset position specify
zero for the LIMIT value, the following statement will return all

records that meet select criteria starting from fifth position to the
end.

SELECT * FROM Customer AS c,
WHERE o.CustNum

Order AS o
LIMIT 5,

c.CustNum 0

SELECT * FROM Customer AS c,
WHERE o.CustNum

Order AS o
c.CustNum LIMIT O OFFSET 5

INSERT INTO tableName

[(fieldName [fieldName J]...)]
VALUES (value value]...)

’

[

’

The following statement creates a new record into the State table:

INSERT INTO State
(State, StateName,
VALUES ('CJ',

Region)
'Cluj', 'NW')

or specify only the field values in the proper order:

INSERT INTO State
VALUES ('CcJg', 'Cluj', 'NWw')

Notes:

o Automatic data-type conversion does occur if possible - setting a
character field to a numeric value will result in field having the
string representation of the value. If data-type conversion fails
the transaction is rolled-back and an exception is raised.

o If no CREATE privilege exists on the table or unique constraints is
violated the transaction is rolled-back and an exception is raised.

o CREATE/WRITE triggers does fire as for regular ABL.

O

No functions are supported in field assignment, only scalar values.

o If fields name list is omitted and only values list is specified the
number and the order of values entries must match exactly the
number and order of fields in the table or an exception is raised.

Update

Because of the result-set nature of SQL UPDATE and the sequential
record-processing of the Progress ABL the functionality is
implemented by simply using ASSIGN statement inside of data
retrieval block (FOR EACH) - records are updated one by one inside
the retrieval block.

UPDATE tableName

SET fieldName = value [[,] fieldName =
value]...

[WHERE criteria]

The following statement updates the department code of all
employees from Marketing department (code '300') and transfer them
to the Sales department (code '400").

UPDATE Employee
SET DeptCode = '400'
WHERE DeptCode = '300'
Notes:

o Automatic data-type conversion does occur if possible - setting a
character field to a numeric value will result in field having the
string representation of the value. If data-type conversion fails
the transaction is rolled-back and an exception is raised.

o If no WRITE privilege exists on the table or unique constraints is
violated the transaction is rolled-back and an exception is raised.

o If a record that meets the selection criteria is locked by some
other user the transaction is rolled-back and an exception is
raised. If selection criteria leads to a full table scan (WHOLE-
INDEX) the record lock is only attempted for the records that
meets the selection criteria.

o WRITE triggers does fire as for regular ABL.

No functions are supported in field assignment, only scalar values.

o The comma between fields assignment is optional but used for
'readability’.

o

Delete

DELETE FROM tableName
[WHERE criteria]

Because of the result-set nature of SQL DELETE and the sequential
record-processing of the Progress ABL the functionality is
implemented by simply using ABL DELETE statement inside of data
retrieval block (FOR EACH) - records are deleted one by one inside
the retrieval block.

The following statement deletes all employees from Marketing
department (code '300').

DELETE Employee
WHERE DeptCode = '300'

Notes:

o If no DELETE privilege exists on the table or validation expression
evaluate to false the transaction is rolled-back and an exception
is raised.

o If a record that meets the selection criteria is locked by some
other user the transaction is rolled-back and an exception is
raised. If selection criteria leads to a full table scan (WHOLE-
INDEX) the record lock is only attempted for the records that
meets the selection criteria.

o DELETE triggers does fire as for regular ABL.

Business Logic

This section covers the Progress ABL server-side component that is
used by the JDBC driver and which provides a number of generic or
JDBC specific functionalities:

Database Meta Data

Dynamic Select Engine
Caore Services

Deployment

The server side component of the ABL JDBC driver is a collection of
classes implemented in Progress ABL that serves as a fagade for the
application business logic and need to be made available on the
Progress Application Server that hosts the application itself.

The only thing that need to be in order to have it deployed is to add
the ABL JDBC server folder to the agent's PROPATH for the Progress
Application Server used by the application, there are no extra
databases required or anything more that that.

The ABL JDBC server component can be found in "<InstallPath>/abl"
folder, for that the "ABL Server" component need to be selected during
installation process.

License

The license file need to be named abljdbc.lic (previously abljdbcsrv.lic)
and placed in the same folder where the ABL JDBC server component
was installed - "<InstallPath>/abl". The license validation process will
also search for the license file through the Progress Application Server
PROPATH.

Controller

ro.acorn. jdbc.sql.Controller |

The central piece of the business logic framework is the 'controller’
which will boot-strap all framework's services as needed and serves
as the interface between the client API requests and the application
business logic by automatically providing session management,
authentication and authorisation for each and every request.

static TAuthentication getAuthenticationService ()
Static method that gives access to the authentication service used by
the framework, if authentication is not enabled the

AnonymousAuthentication service is used.

static TAuthorization getAuthorizationService ()

Static method that gives access to the authorization service used by
the framework, if any.

static ICatalog getCatalogService ()

Static method that gives access to the business catalog service used
by the framework.

static ClientPrincipal getClientInfo ()

Returns a ClientPrincipal instance holding information about the
current user - even if authentication is not required this will contain
information about user session like the login name provided and
session start date. Stored procedures and business views can use
this information to restrict information to sensitive data (row level
data filtering) or provide custom user's view on the business data.

static IConfiguration getConfigurationService ()

Static method that gives access to the configuration service used by
the framework.

static ILogger getLogger ()

Static method that gives access to the logging service used by the
framework, if any.

Stored Procedure

ro.acorn. jdbc.sql.IStoredProcedure

In order to be able to expose the business logic as a service this
simple interface need to be implemented by each class that is going
to be registered in the business logic catalog. If your business logic
supports pagination then is better to also implement the
IBufferedPracedure interface.

ProcedureMetaData getMetaData

The business logic service need to be able to self-describe itself in
order for the business catalog registration service to register it.

The method should return a valid instance of ProcedureMetaData
object that can be obtained by simply calling the constructor
providing the procedure name which is mandatory and optionally the
description of the business logic service as it's going to appear on
business catalog. If the stored procedure does not return a valid
instance of procedure meta data or if the service name meta data
information was not set then the procedure fails to be registered into
the business catalog.

If the business logic service accepts parameters (input, input-output
or output), returns a value or a result set there are methods in
ProcedureMetaData object to describe those parameters as well.
Although this is not mandatory it can provide more details on how
the business logic service (stored procedure) need to be called and
what the result looks like.

integer executeProcedure
(callStatement as CallableStatement,
output resultSet as handle)

This method is called when a store procedure call statement is made
from the JDBC client; normally this should call some service of
existing application business logic and depending on input
parameters received it can set output parameters and return a
primitive data type, a temp-table or dataset handle.

The method have two parameters, first is an instance of
CallableStatement that can be used to retrieve the input parameters
sent from JDBC client and set values of output parameters; last
parameter of the method is an output handle to a temp-table or a
dataset containing the result set(s).

Since the output parameter can be either a temp-table or dataset a
simple handle is used instead of table-handle or dataset-handle, this
means that the data structure must still be valid (not be deleted if
dynamically created) when the method ends. It is expected however
that, if dynamic, the result data structure to be deleted by the stored

procedure's destructor in order to avoid memory leaks.

Standard JDBC does allows for multiple result sets and the ABL JDBC
driver supports multiple open result sets.

Procedure Meta Data

ro.acorn. jdbc.sql .metadata.ProcedureMetaData |

This is a way for a business logic service that is going to be
registered in the business logic catalog to describe itself by providing
some useful meta-data information like service description as well as
parameter information.

The kind of possible procedure return types are defined as static

constants:

procedureNoResult the procedure does not return any result
procedureReturnsResult the procedure returns a result
procedureResultUnknown the procedure result is unknown

ProcedureMetaData
(serviceName as character,
serviceDescription as character)

Public constructor which creates a meta data object for the given
service name having an optional service description; the return type
unknown by default. The service name need to be unique for the
catalog in order to be able to register it in the business catalog.

character getName ()

Returns the business service nhame as is going to be shown in
business catalog.

character getDescription ()

Returns the business service description as is going to be shown in
business catalog.

integer getReturnType ()

Returns the business service return type, if no return parameter was
set and the return type was not set to no return it will be return
unknown by default.

integer getParameterNumber ()

Returns the number of parameters the business service takes, those
can be input, output or input-output.

ParameterMetaData getParameter (parameterIndex as
integer)
Returns the meta data information for specific business service

parameter, the parameter index is one-based. If parameter index
specified is less than one or greater than the number of parameters
null is returned.

ParameterMetaData getReturnParameter ()

Returns the meta data information for return parameter if the
business service returns any. If no return parameter was registered
for the business service null is returned.

void addParameter (name as character, type as integer,
dataType as character, description as character,
nullable as integer)
Add a new parameter to the business service parameter list, the
parameters should be added in order as it is impossible to alter the
order once registered.
- name is mandatory and unique
- type can be either input, output or input-output
- data type is the Progress data type (translated to SQL
equivalent by the DatabaseMetaData)
- description is optional but is preferable to be filled in
- nullable can be either set to nullable, non nullable or unknown

Parameter types as well as nullable options are defined as static
constants in ParameterMetaData.

void setName (name as character)

Sets the business service name as is going to be shown in business
catalog.

void setDescription (description as character)

Sets the business service description as is going to be shown in
business catalog.

void setReturnType (returnType as integer)

Sets the business service return type, valid options are:
procedureNoResult and procedureResultUnknown_Theretun1type
is set to procedureReturnsResult only if the return parameter is
set by calling setReturn method.

void setReturn (name as character, dataType as character,
description as character)

Sets the return parameter of the business service, there can only be
one return parameter. Use this method when the return parameter is
a scalar one.
- name is mandatory and unique
- data type is the Progress data type (translated to SQL
equivalent by the DatabaseMetaData)
- description is optional but is preferable to be filled in

When set the procedure return type is changed to
procedureReturnsResult.

void setReturn (name as character, description as

character,
resultSet as handle)

Sets the return parameter of the business service, there can only be
one return parameter. Use this method when the return parameter is
a result set; if the resultSet handle is a dataset then the business
service returns multiple result sets which is possible as opposed with
only one scalar return parameter.

- name is mandatory and unique

- description is optional but is preferable to be filled in

- resultSet is mandatory and must be a valid-handle to either a

temp-table or a data-set object.

When set the procedure return type is changed to
procedureReturnsResult.

Parameter Meta Data

ro.acorn. jdbc.sql .metadata.ParameterMetaData

Used to describe each business services parameters in order to have
the complete detail of the parameters a business service expects.

The kind of possible parameter types are defined as static constants:

procedureColumnUnknown unknown parameter type
procedureColumnIn input parameter
procedureColumnInOut input-output parameter
procedureColumnOut output parameter
procedureColumnReturn return parameter
procedureColumnResult return result set parameter

The parameter nullable options are defined as static constants:

columnNullableUnknown nullable option is unknown
columnNoNulls parameter does not allow null value
columnNullable parameter does allow null value

ParameterMetaData
(name as character, type as integer
dataType as character, description as character,
nullable as integer)

Public constructor which creates a meta data object for a scalar
parameter.

- name is mandatory
- type can be either input, output, input-output or return
- data type is the Progress data type (translated to SQL

equivalent by the DatabaseMetaData)
- description is optional but is preferable to be filled in
- nullable can be either set to nullable, non nullable or unknown

ParameterMetaData
(name as character, description as character,
resultSet as handle)

Public constructor which creates a meta data object for a result-set
return parameter.

- hame is mandatory

- description is optional but is preferable to be filled in

- resultSet must be a valid-handle of either a temp-table or a
data-set object

The type of parameter is automatically set to
procedureColumnResult,

Getter and setter methods are available for each parameter attribute.

Buffered Procedure

ro.acorn. jdbc.sql.IBufferedProcedure |

The result sets can sometime be very large retrieving all data at once
in a temp-table or dataset structure might not be the best approach,
sometimes even impossible as temp-table storage buffers are
overflow. To overcome this the stored procedure might choose to
implement the IBufferedProcedure interface, after the initial call to
executeProcedure which will retrieve the first data page the client
will callback for more data using fetchPage method.

The pagination is controlled by the buffered procedure alone, the
page size requested by the client is only an indication unless it's set
to be zero which means no pagination is to be used and the client
expects to receive all data at once. The procedure might choose to
set hard limit on maximum number of records retrieved in a data
page but if the client request all records (page size set to zero) it
will not ask for more data even if the business logic returns less than
the total number of records. It is recommended to better throw an
error if number of records that are to be returned exceeds the hard
limit instead of sending incomplete result set, that way the client is
at least aware of the problem and might try to retrieve the records
using a lower page size.

void setFetchSize (pageSize as integer)

Set the page size when fetching data, this is set by the client but the
stored procedure might choose to consider this just as an indication -
the client will use all records returned regardless of the fetch size.

logical hasMoreData ()
Returns true if there is more data to be retrieved.

logical fetchPage (output resultSet as handle)

Fetch new data page and return true if there is more data available
or false if all data was retrieved.

Same as with executeProcedure the output parameter can be either
a temp-table or dataset handle but it must have the same data
structure as the initial result returned by executeProcedure,
Because the client does not actually control pagination, the current
offset is to be kept by the business procedure itself - the procedure
is instantiated only once and the controller will subsequently call
fetchPage on the same instance as requested by the client either
till all data is retrieved or the client doesn't need more data (closes
the result set).

Statements

Each request sent from the JDBC client is a 'statement’, depending
on the syntax used on that statement it can be one of the three:

Callable Statement store procedure call
Select Statement dynamic select

Batch Statement batch of data manipulation statements that do
not return result set

Batch and dynamic select statements are normally handled internally
by the framework, the callable statement is passed to the business
logic service on each call.

For all types of statements there is an option to raise error
condition(s) that are going to be sent back to the client and a
SQLWarning exception is going to be thrown by the driver.

For business logic services this can be used to validate input
parameters or signal abnormal execution that made impossible to
return the result set expected by the client, if the business service
normally returns a result set and fails to provide one an error
condition need to be raised - if no error condition is set from the
business logic and no valid result set is returned a generic exception
is raised by the driver.

Statement

ro.acorn. jdbc.sgql.Statement

When a business logic service is called from the JDBC client the
stored procedure class that implements the service receive an
instance of CallableStatement that holds all input parameters that
were set by the client and which can also be used to set output/
return parameter values back to the client - the client need to use a
callable statement for that and register the output parameters before

making the call.

This object extends the base statement object by adding
functionality to retrieve and set parameters that can be passed
between client and server and the other way around.

The data type of each parameter sent is important to match the data
type expected for that parameter, parameters are retrieved using
index position which is a one-base index (starting from 1). The
callable statement provides methods to get or set parameters for
various data types.

void addException (errorObj as Progress.Lang.Error)

Add a new error condition(s) by retrieving all messages from the error
object using the SQLState "generic error".

void addException (errorObj as Progress.Lang.Error,
sgqlState as character)

Add a new error condition(s) by retrieving all messages from the error

object using the given SQLState code.

void addException (sqlErr as SQLException)

Add a new error exception, this can have a full chain of cause
exceptions that tracks back to the root one.

void addWarning (reason as character, code as integer,
sglState as character)
Add a new warning message specifying the reason, the native code

and the SQLState code (see values available in
ro.medu.abl.sgl.SQLState) .

void addWarning (reason as character, code as integer)

Add a new warning message specifying the reason and native code,
the SQLState is going to be set to "generic error".

void addWarning (reason as character)

Add a new warning message specifying only the reason, the native
code is zero and the SQLState is "generic error".

void addWarning (errorObj as Progress.Lang.Error,
sgqlState as character)

Add a new warning message(s) by retrieving all messages from the

error object and use given SQLState code - GetMessage and

GetMessageNum methods of error object are used for reason and

error code.

void addWarning (errorObj as Progress.Lang.Error)

Add a new warning message(s) by retrieving all messages from the
error object using the SQLState "generic error".

void addWarning (warnObj as SQLWarning)
Add a new warning message(s) by retrieving all messages from the

SQLWarning object with corresponding SQLState code set for each
error message.

void clearWarnings ()
Remove all SQL warnings set on this statement.

ClientPrincipal getClientInfo ()

Returns a ClientPrincipal instance holding information about the
current user - even if authentication is not required this will contain
information about user session like the login name provided and
session start date. Stored procedures can use this information to
restrict information to sensitive data (row level data filtering) or
provide custom user's view on the business data.

character getProcedureName ()

For a callable statement this returns the name of the stored
procedure requested to be executed, for other statements returns
constant values used by the framework.

Callable Statement

| ro.acorn. jdbc.sgl.CallableStatement

When a business logic service is called from the JDBC client the
stored procedure class that implements the service receive an
instance of CallableStatement that holds all input parameters that
were set by the client and which can also be used to set output/
return parameter values back to the client - the client need to use a
callable statement for that and register the output parameters before
making the call.

This object extends the base Statement object by adding
functionality to retrieve and set parameters that can be passed
between client and server and the other way around.

The data type of each parameter sent is important to match the data
type expected for that parameter, data conversion can be done, if
possible, when data types do not match. Parameters are retrieved
using index position which is a one-base index (starting from 1). The
callable statement provides methods to get or set parameters for
various data types.

inherits Statement

integer getByte (parameterIndex as integer)
Retrieve the value of JDBC TINYINT or BIT parameter as integer data
type.

memptr getBytes (parameterIndex as integer)
Retrieve the value of JDBC BINARY or VARBINARY parameter as a
bytes array memory pointer data type.

logical getBoolean (parameterIndex as integer)
Retrieve the value of JDBC BIT or BOOLEAN parameter as logical data
type.

longchar getClob (parameterIndex as integer)
Retrieve the value of JDBC CLOB parameter as longchar data type.

handle getDataset (parameterIndex as integer)
Retrieve a dataset handle by parsing the value of JDBC VARCHAR

parameter that should contain the XML dataset serialization (a
format that can be used with read-xml).

date getDate (parameterIndex as integer)
Retrieve the value of JDBC DATE parameter as date data type.

decimal getDouble (parameterIndex as integer)
Retrieve the value of JDBC DOUBLE or REAL or NUMERIC parameter as
decimal data type.

decimal getFloat (parameterIndex as integer)
Retrieve the value of JDBC FLOAT or NUMERIC parameter as decimal
data type.

integer getInt (parameterIndex as integer)
Retrieve the value of JDBC INTEGER parameter as integer data type.

int64 getlLong (parameterIndex as integer)
Retrieve the value of JDBC LONG parameter as big integer data type.

integer getNumParams ()
Returns the number of parameters passed to this statement.

integer getShort (parameterIndex as integer)
Retrieve the value of JDBC SMALLINT or TINYINT parameter as
integer data type.

integer getSQLType (parameterIndex as integer)
Return the SQL data type of the parameter.

character getString (parameterIndex as integer)
Retrieve the value of JDBC CHAR or LONGCHAR or VARCHAR parameter
as character data type.

handle getTable (parameterIndex as integer)
Retrieve a temp-table handle by parsing the value of JDBC VARCHAR

parameter that should contain the XML temp-table serialization (a
format that can be used with read-xml).

datetime getTime (parameterIndex as integer)
Retrieve the value of JDBC TIME or TIMESTAMP parameter as date-

time data type.

datetime-tz getTimestamp (parameterIndex as integer)
Retrieve the value of JDBC TIMESTAMP parameter as date-time with
time-zone data type.

void loadDataset (parameterIndex as integer, dataset-
handle dsHandle)

Load data in a dataset handle by parsing the value of JDBC VARCHAR
parameter that should contain the XML dataset serialization (a
format that can be used with read-xml).

void loadTable (parameterIndex as integer, table-handle
ttHandle)

Load data in a temp-table handle by parsing the value of

JDBC VARCHAR parameter that should contain the XML temp-table
serialization (a format that can be used with read-xml).

void setByte (parameterIndex as integer, parameterVal as
integer)
Set the value of JDBC BIT parameter.

void setBytes (parameterIndex as integer, parameterVal as
memptr)

Set the value of JDBC BINARY parameter.

void setBoolean (parameterIndex as integer, parameterVal
as logical)
Set the value of JDBC BOOLEAN parameter.

void setClob (parameterIndex as integer, parameterVal as
longchar)

Set the value of JDBC CLOB parameter.

void setDate (parameterIndex as integer, parameterVal as
date)

Set the value of JDBC DATE parameter.

void setDouble (parameterIndex as integer, parameter as
decimal)

Set the value of JDBC DOUBLE parameter.

void setFloat (parameterIndex as integer, parameterVal as
decimal)

Set the value of JDBC FLOAT parameter.

void setInt (parameterIndex as integer, parameterVal as
integer)
Set the value of JDBC INTEGER parameter.

void setLong (parameterIndex as integer, parameterVal as

int64)
Set the value of JDBC LONG parameter.

void setShort (parameterIndex as integer, parameterVal as
integer)
Set the value of JDBC TINYINT parameter.

void setString (parameterIndex as integer, parameterVal
as character)

Set the value of JDBC VARCHAR parameter.

void setTime (parameterIndex as integer, parameterVal as
datetime)

Set the value of JDBC TIME parameter.

void setTimestamp (parameterIndex as integer,
parameterVal as datetime-tz)

Set the value of JDBC TIMESTAMP parameter.

Select Statement

ro.acorn. jdbc.sgl.SelectStatement |

When a data query is sent from the JDBC client the all query details
are loaded in an select statement instance - query buffers and fields,
where clause(s) and pagination options.

This object extends the base Statement object and is usually used by
the framework to select data directly from database table(s) but it
can also be used for business views when a custom 'business view' of
the data is built on top of existing tables - like doing de-
normalisation and field aggregation.

inherits Statement

integer getFetchSize ()

Returns the preferred client page fetch size. The standard select
statement can use pagination, for business views this is only
important if the view also support pagination by implementing the
IBufferedView interface.

character getFieldAlias (bufferIndex as integer,
fieldIndex as integer)

Returns the alias for the fields at given position in one of the query
buffers, if no alias is used this will return the field name. Both buffer
and field indexes are 1-base.

character getFieldName (bufferIndex as integer,
fieldIndex as integer)

Returns the name for the fields at given position in one of the query
buffers. Both buffer and field indexes are 1-base.

integer getLimit ()
Returns the maximum number of records the client expects to receive
back, used for data pagination.

integer getNumBuffers ()

Returns the number of buffers used in select query, for business
views only a single table/view select is supported so this will always
be 1 in that case.

integer getNumFields (bufferIndex as integer)

Returns the number of fields selected from that particular query
buffer.

integer getOffset ()

Returns the record offset from which the records retrieval should
start, used for data pagination.

character getOrderBy ()
Returns the order by clause used for current query if any.

character getOrderBy (fieldMap as character)

Returns the order by clause used for current query if any using a field
map list for name resolution. This can be used when the field hames
from the business view doesn't match the one in underlying table(s)
to obtain a valid order-by clause that can be used in queries against
the database table(s). The field map is a comma separated list of
field and alias pairs.

character getWhereClause ()
Returns the where clause used for current query if any.

character getWhereClause (fieldMap as character)

Returns the where clause used for current query if any using a field
map list for name resolution. This can be used when the field names
from the business view doesn't match the one in underlying table(s)
to obtain a valid where clause that can be used in queries against
the database table(s). The field map is a comma separated list of
field and alias pairs.

logical hasAggregateFields ()
Returns true if any aggregate function is used for a field in current
query.

logical hasNonAggregateFields ()

Returns true if there are fields selected for which no any aggregate
function is used in current query.

logical isAllFields (bufferIndex as integer)

Returns true if all fields from that particular query buffer are selected
- star (*) was used to return all fields.

logical isBreakBy ()
Returns true if break option was used with the order by clause.

logical isDistinctOnly ()

Returns true if only distinct records should be retrieved based on the
order by clause.

logical isExceptFields (bufferIndex as integer)
Returns true if fields listed for a particular query buffer are to be
excepted - this means all other fields from the buffer are to be
selected instead.

SQLState

ro.acorn. jdbc.sqgl.SQLState

Enumeration class holding all driver specific SQL states.

private constructor SQLState ()

The class has a private constructor, enumeration values are only to
be accessed in a statical manner.

| SUCCESSFUL_COMPLETION |

| GENERAL ERROR |

GENERAL WARNING

NO DATA

SYNTAX ERROR

NOT AUTHORIZED

NO PRIVILEGE

TABLE NOT FOUND

COLUMN NOT FOUND

MISSING PARAMETERS |

WRONG TYPE PARAMETERS

DATA EXCEPTION

DATA NUMERIC OVERFLOW

DATA DATETIME OVERFLOW

DATA DATETIME INVALID

DATA DIVISION BY ZERO

DATA ASSIGN ERROR

DATA DUPLICATE ENTRY |

INVALID CHARACTER SET

INVALID CATALOG

INVALID SCHEMA

INVALID DESCRIPTOR

FEATURE NOT SUPPORTED

WRONG VALUE COUNT

SQLException

| ro.acorn. jdbc.sql.SQLException

When errors occurs when executing a statement those can be sent
back to the client by simply adding them to the statement's
exception or warning list. Since batch and select statements are
usualy handled by the framework this is often used in the callable
statement case when stored procedures are executed.

inherits Progress.Lang.AppError

constructor SQLException (reason as character)

Create a new exception instance using the SQLState "generic error",
the main exception 'reason’' is set by the first string parameter.

constructor SQLException (errorObj as
Progress.Lang.Error)

Create a new exception instance by retrieving all messages from the
error object using the SQLState "generic error”, first error message is
used as 'reason’.

constructor SQLException (reason as character, errorObj
as Progress.Lang.Error)

Create a new exception instance by retrieving all messages from the
error object using the SQLState "generic error", the main exception
'reason' is set by the first string parameter.

constructor SQLException (reason as character, nativeCode
as integer)

Create a new exception instance using the SQLState "generic error",
the main exception 'reason' is set by the first string parameter and
second parameter is the native error code - the Progress error code.

constructor SQLException (reason as character, nativeCode
as integer,

sglState as character)
Create a new exception instance, the main exception 'reason' is set
by the first string parameter, second parameter is the native error
code and last is the SQL state code. The SQL state can actually be
anything but there is a list of most common error types that can be
used.

integer getErrorCode ()

Returns exception native error code, can be either Progress own error
numbers or application specific one.

static character getErrorMessage (proError as
Progress.Lang.Error)

Returns the main error message from the Progress error object - this
is a convenience method to solve the inconsistency between AppError
and other Progress error objects.

character getMessage ()

Returns the main error message of this exception, this is not the root
cause but the reason used when the exception was instantiated.

SQLException getNextException ()

Returns the cause of this exception if any, exceptions can be chained
that way to get more details about what went wrong when executing
a statement.

character getSQLState ()

Returns the SQL state code of the exception.

void setNextException (sqlErr as SQLException)

Add a new exception on the exception chain as causes of this given
exception.

SQLWarning

ro.acorn. jdbc.sql.SQLWarning |

This is just a special case of an SQLException that is meant to only
signal a warning condition not an actual exception, it inherits all
constructors from the base class.

inherits SQLException

Services

A number of core services are available and depending on
configuration options can be activated or not, the services are build
to be plug-able and can be easily extended if needed.

Services that are currently available and can be activated by simply
changing the configuration are: authentication, authorization,
business catalog, logging and configuration service itself.

Please note that the core authentication services provided both use
the client principal object and as such the new audit features of Open
Edge are going to trap each user action if activated, however the
logging service can also be activated for audit purposes if built-in
Open Edge audit feature is not activated.

N
Authenimaimn; horizati
Business Catalog
~onfi ,

" logging

Some services can be configurable which means it implements the
IConfigurable interface and when the controller loads them it will
automatically call the load configuration method on them passing the
configuration service manager and the appropriate configuration
section. If a class hierarchy is create for a particular service then the
specific service configuration can override the generic service
configuration, meaning the service should look first for specific
configuration in given service configuration section and if not use the
generic one.

Service configuration section for those that support configuration is in
service specific section under: /sqgl/services,

Authentication

The authentication service is used in cases where access to the
business logic is restricted to authenticated users.

There are a number of already implemented service managers for that
provided by the framework but there is also an option to use a
custom service manager if needed proved that it implement the
required interface - IAuthentication.

For services that relies on using the client principal object for passing
the authentication token an abstract base class is provided with
common functionality - AuthenticationBase.

For service managers implementing the IConfigurable interface the
configuration section used by default is: /sql/services/
authentication,

Note: In order to support user management related Data Definition
Language (DDL) the interface will at some point be extended to
support functions like: CREATE, DROP, ALTER user.

IAuthentication

| ro.acorn.jdbc.service.IAuthentication |

This is the interface that any authentication service manager must
implement in order to be used as such by the framework.

raw getToken (userInfo as ClientPrincipal)

This method seals the client principal object containing user
information and returns the authentication token that is going to be
used by all subsequent requests made within the same user session.
The authentication token is usually the encrypted serialization of the
client principal but it might also be a simple session identifier.

ClientPrincipal login (userName as character, userPasswd
as character)

This method validates the user credentials passed and if valid it
returns the authentication token that is going to be used by all
subsequent requests made within the same user session. The
authentication token can be anything from the full session object
serialization to a simple session identifier.

ClientPrincipal parseToken (authenticationToken as raw)
This method validates the authentication token, if the authentication
token is not valid the user request will be rejected. The
authentication service can also implement a session time-out
mechanism and invalidate a token after a certain time or inactivity.

As this method is being called on each user request this is the place
where the authenticated user can be set either for the whole session
(SET-CLIENT) or for specific database(s) (SET-DB-CLIENT) for audit

purposes.

If the application business logic needs some sort of session state
this might also be a good place to restore user's session.

ClientPrincipal

ro.acorn. jdbc.service.authentication.ClientPrincipal

This is merely a wrapper on top of a client-principal object handle
and is used for authentication and authorization of SQL clients. On
each connection the user credentials are validated and a user session
is established, details about the user and session information is
stored in a client-principal object that is then serialized back to the
client. On every request sent from the client the session information
is passed back and restored in a ClientPrincipal instance that is
accessible using getClientInfo method either from the
CallableStatement injected as parameter when a stored procedure
runs or statically from the Controller.

static ClientPrincipal createClient (userName as
character,
authDomain as character, sessionId as character)

Create a ClientPrincipal instance using the client and session
information provided, if first parameter contains domain information
(user@domain) that takes precedence over the one set as second
parameter. The instance is not 'sealed' so additional information can
be added using setProperty method.

static raw createToken (userName as character,
authDomain as character, sessionId as character,
sealKey as character)

Create a ClientPrincipal instance using the client and session
information provided, 'seal' the instance using the provided secret

key and return the session token that can be used for session
management afterwards. This can be used when no additional
information need to be set using setProperty method.

static ClientPrincipal loadClient (sessionToken as raw,
sealKey as character)

Create a ClientPrincipal instance by decrypting the session token, the

token 'seal' is validated using the provided secret key and error is

thrown if secret key do not match or the token was been tampered

with. This is normally done on each client request to re-establish the

user session.

character getDomain ()
Returns the domain name set on the client principal instance.

datetime-tz getSessionExpire ()

Returns the session expiration timestamp if set, if session was not
set to expire this will return null.

character getProperty (propertyName as character)

Returns the value of a property set for the session, returns null if
property value not set.

character getQualifiedName ()

Returns the full used name using the 'user@domain' format, if no
domain is set this returns just the user name.

datetime-tz getSessionId ()

Returns the session unique identifier, this can be used with an
external session manager service to keep additional session state
(user code, language code, currency code, time zone, etc).

datetime-tz getSessionStart ()

Returns the timestamp of when the session started, the login
process is considered to be finished when the client principal was
sealed.

raw getToken ()

Returns a portable security token regardless if information was
already sealed or not.

raw getToken (secretKey as character)

Returns a portable security token after sealing the client information
using the given secret key as domain access code.

character getUser ()
Returns the used name.

void seal (secretKey as character)

Seals the client information using the given secret key as domain
access code, if already sealed this throws an error.

void seal (secretKey as character, expireTime as

datetime-tz)

Seals the client information using the given secret key as domain
access code and set a session expiration time, if already sealed this
throws an error.

void setDbClient (databaseName as character)

Set the user identity for given database (logical name) using user
information set in this instance.

void setProperty (propertyName as character,
propertyValue as character)

Set the value of a property into the session context. Because this
whole client context is serialised and passed back and forth on every
request is better to keep the number of session properties stored in
it to the minimum - use the session identifier together with a proper
session management service that stores session data in a database
table as an alternative.

Authentication Base

| ro.acorn.jdbc.service.authentication.AuthenticationBase |

This is an abstract class that implements some basic functionality
based on client principal object which once sealed is being passed
along as an authentication token, not all methods from
TIAuthentication interface are implemented. The class can be used as
a base class for any authentication service that want to use the
same client principal approach in which case only the login method
need to be implemented.

The class has also a number of extra methods that basically set a
number of options like authentication domain, and password
encryption options; the class is also conflgurable (implements
IConfigurable interface) meaning it can use a configuration service for
auto-configuration.

character getDomain ()
Returns the authentication domain used.

character getSecretKey ()

Returns the authentication secret key used to seal and validate the
user information into the client principal.

raw getToken (userInfo as ClientPrincipal)

This method seals the client principal object containing user
information and returns the authentication token that is going to be
used by all subsequent requests made within the same user session.
The authentication token is usually the encrypted serialization of the
client principal but it might also be a simple session identifier.

ClientPrincipal parseToken (authenticationToken as raw)
This method validates the authentication token, if the authentication

token is not valid the user request will be rejected.

void setDomain (domain as character)

Set the authentication domain used to seal the client principal
object. The domain need to be already registered in the session
security policy using the specified domain secret key.

void setSecretKey (domainKey as character)

Set the authentication secret key used to seal the client principal
object.

All authentication options can be configured in main authentication
service configuration section using the following keys:

domainName Authentication domain.
secretKey Authentication secret key.

Anonymous Authentication

| ro.acorn.jdbc.service.authentication.AnonymousAuthentication

This is the authentication service used when no authentication is
actually enforced, just to be able to keep session state.

inherits AuthenticationBase

ClientPrincipal login (userName as character,
userPassword as character)

Returns a client principal instance using provided user name - or
‘anonymous' if not specified.

Database Authentication

| ro.acorn.jdbc.service.authentication.DatabaseAuthentication

This is basic database authentication service which is using the
default database authentication mechanism or Progress database.

inherits AuthenticationBase

character getDatabase ()

Returns the database used for authentication.

ClientPrincipal login (userName as character,
userPassword as character)

Validate the user and password against database's users and return
a client principal instance if valid credentials or throw an error
otherwise.

void setDatabase (database as character)

Set the database used to authenticate users against.

The database to be used for authentication can be configured in
service specific configuration section "sqgl/services/authentication":

databaseAuthentication/databaseName

Domain specific authentication options can override the ones from
main authentication service configuration section by specifying them
in the service specific configuration section:

databaseAuthentication/domainName
databaseAuthentication/domainKey

The encryption options are not applicable as the database security
mechanism is going to be used directly.

Table Authentication

| ro.acorn. jdbc.service.authentication.TableAuthentication

This is basic table authentication service which is using a application
specific user table to validate login credentials against.

inherits AuthenticationBase

The kind of possible encryption methods are defined as static

constants:

encryptNone password is stored unencrypted

encryptEncode password is encrypted using one-way encode
method

encryptMD5 password is encrypted with the MD5 hash
algorithm using the provided key as hash key

encryptSHAL password is encrypted with the SHA1 hash

algorithm using the provided key as hash key

character getEncryptKey ()
Returns the key used to encrypt the user password when storing it

into the user table, not used when encryption method selected is
encode.

integer getEncryptMethod ()

Returns the method used to encrypt the user password when storing
it into the user table.

character getPasswordField ()
Returns the name of table field that holds the user password.

character getTable ()
Returns the name of the user table used for authentication.

character getUserField ()
Returns the name of table field that holds the user name/id.

ClientPrincipal login (userName as character,
userPassword as character)

Validate the user and password against users table and return a
client principal instance if valid credentials or throw an error
otherwise.

void setEncryptKey (key as character)

Set the hash key to be used when user password is encrypted to be
stored into the user table.

void setEncryptMethod (encryptMethod as integer)

Set the algorithm to be used when user password is encrypted to be
stored into the user table.

void setTable (table as character,

userField as character,

passwdField as character)
Set the information about the user table used to authenticate users
against. Table name should be qualified with the database name if
needed, user and password field should be valid fields on the given
user table.

The information about the user table to be used for authentication
and encryption options can be configured in service specific
configuration section "sql/services/authentication":

tableAuthentication/tableName
tableAuthentication/userField
tableAuthentication/passwordField
tableAuthentication/encryptMethod
tableAuthentication/encryptKey

The default encryption method used if not otherwise specified is
encryptEncode,

Authorization

The authorization service is used in cases where access to the
business logic services require authorization.

Currently there is no authorization service provided by the framework
but there is always possible to use a custom service manager if

needed proved that it implement the required interface -

For service managers implementing the IConfigurable interface the
configuration section used by default is: /sqgl/services/
authorization,

Note: In order to support Data Control Language (DCL) the interface
will at some point be extended to support functions like: GRANT/
REVOKE and require authorization groups/roles.

IAuthorization

| ro.acorn.jdbc.service.IAuthorization

This is the interface that any authorization service manager must
implement in order to be used as such by the framework.

logical isAllowed (userInfo as ClientPrincipal,
functionName as character)

This method validates the user privileges for performing specified

function, it returns true if the user has granted the privilege and false
otherwise.

The authorization service manager might implement group/roles
based authentication or not, the authorization service manager might
need to implement additional interfaces if it supports Data Control
Language statements and group/roles authorization.

Business Catalog

The Business Logic Catalog Service is managing the business catalog
and provides meta-data information about registered services -
business logic procedures, and business views.

How the catalog service is implementing procedures and views
registration or where and how it stores meta-data information is not
relevant for the framework, therefore the ICatalog interface that need
to be implemented by a custom catalog service only contains
methods for querying the catalog information.

There is an abstract base class that can be used to more easily
implement a custom service and the framework provides a default

implementation using a file data-store.
For service managers implementing the IConfigurable interface the

configuration section used by default is: /sqgl/services/
businessCatalog,

ICatalog

| ro.acorn. jdbc.service.ICatalog

This interface defines the public methods a business catalog
registration service need to implement.

IStoredProcedure getProcedure (procName as character)
Returns an instance of the class that implements the requested
business service, it's up to the registration service what the

behaviour is when the service is registered on multiple catalogs.

IStoredProcedure getProcedure (procName as character,
catalog as character)

Returns an instance of the class that implements the requested
business service and was registered for the catalog. If no class
providing that business service was registered on given catalog null
is returned.

void getProcedureColumns (catalog as character,
procNamePattern as character,
columnNamePattern as character, output table-
handle procedureColumnsSet)

Returns the list of procedure's parameters, this includes columns
from procedure's return set(s); if catalog parameter is null the search
will be done on all catalogs else equality match is to be used, both
procedure and column name parameters are regular expression
patterns that can be used together with matches operator. The
output temp-table should have the following structure:

Field name |Data Description

type
p_catalog charact |[Catalog name where the procedure is
er registered
p_name charact ||Procedure name, not the class name
er implementing it but the 'business' name of

this procedure/service.

c_position integer ||[Column index in procedure's result set(s).

C_hame charact ||Column name
er
c_type integer ||Column type (input, output, input-output,

result set) - valid values in
ParameterMetaData static properties.

c_data_type |[charact ||Column data type - Progress data types not
er SQL equivalent.
C_desc charact |[Column description
er
c_null integer ||Column nullable settings - valid values in
ParameterMetaData static properties.

handle getProcedureResultMeta (procName as character,
catalog as character,
resultIndex as integer)

Returns the table-handle of specific procedure's result set, if any. If
procedure returns a dataset then resultIndex parameter is used to
return a particular table from it - 1 base index, if procedure does not
return any result set(s) or resultIndex is invalid the method returns
null.

void getProcedures (catalog as character, procNamePattern
as character,
output table-handle procedureCatalogSet)

Returns the list of procedures registered with the catalog service, if
catalog parameter is null the search will be done on all catalogs else
equality match is to be used, procedure name parameter can be a
regular expression pattern that can be used together with matches
operator. The output temp-table should have the following structure:

Field name |Data Description
type
p_catalog character |Catalog nhame where the procedure is
registered
p_name character ||Procedure name, not the class name

implementing it but the 'business' name of
this procedure/service.

|p desc ||character ||Procedure description

p_type integer ||Procedure return type - valid values in
ProcedureMetaData static properties.

IView getView (viewName as character)

Returns an instance of the class that implements the requested
business view, it's up to the registration service what the behaviour
is when the view is registered on multiple catalogs.

IView getView (viewName as character, catalog as
character)

Returns an instance of the class that implements the requested
business view and was registered for the catalog. If no class
providing that business view was registered on given catalog null is
returned.

void getViewColumns (catalog as character,
viewNamePattern as character,
columnNamePattern as character, output table-
handle viewColumnsSet)

Returns the list of view's columns; if catalog parameter is null the
search will be done on all catalogs else equality match is to be used,
both view and column name parameters are regular expression
patterns that can be used together with matches operator. The
output temp-table should have the following structure:

Field name |Data |Description
type
v_catalog charact||Catalog name where the view is registered
er
v_name charact|View name, not the class name implementing
er it but the 'business' hame of this 'view'
C_position integer|/Column index
C_hame charact||Column name
er
c_data_type |charact|Column data type - Progress own data types
er
c_desc charact||View's column description
er
c_null logical |[True if column can be null, false if mandatory
c_decimals |linteger|[Number of decimals, for decimal fields
Cc_width integer||Column's SQL width
C_default charact|Column's default value (buffer field's string-
er value)

void getViewIndexes (catalog as character,
viewNamePattern as character,
uniqueFlas as logical, primaryFlag as logical,
output table-handle viewColumnsSet)

Returns index information about registered view(s), includes fields of
each index; if catalog parameter is null the search will be done on all
catalogs else equality match is to be used, both view name
parameter is a regular expression pattern that can be used together
with matches operator. If unique and primary flags are not null only
unique, respectively primary indexes are to be returned. The output
temp-table should have the following structure:

Field name |Data Description
type

v_catalog characte||Catalog name where the view is registered
r

v_name characte||View name, not the class name implementing

| ||r ||it but the 'business' name of this 'view'
|i position ||inteqer ||Index position
i_name characte||Index name
r
|i unique ||quica| ||True if index is unique
i _primary logical |[True if index is primary
f position integer |[Index field position inside the index
f name characte|[Index field name
r
f desc logical ||True if field values are indexed in a
descending order

void getViews (catalog as character, viewNamePattern as
character,
output table-handle viewCatalogSet)

Returns the list of views registered with the catalog service, if
catalog parameter is null the search will be done on all catalogs else
equality match is to be used, view name parameter can be a regular
expression pattern that can be used together with matches operator.
The output temp-table should have the following structure:

Field name |Data Description
type
v id character [[Unique view identifier
v_catalog character [[Catalog name where the view is registered
V_nhame character |[View name, not the class name
implementing it but the 'business' name of
this 'view'.
|v desc ||character ||View description

Catalog Base

| ro.acorn. jdbc.service.catalog.CatalogBase

This is an abstract base class that can be used to extend the
framework by providing a custom business catalog service manager.
This base class implements all methods required by the ICatalog
service interface and a number of methods for registering/de-
registering views and procedures and it's configurable using the
settings explained in the configuration section.

Catalog service manager implementations extending this base class
need, at minimum, to implement two abstract methods:
loadCatalog and saveCatalog. Business catalog information can be
persisted in any form (flat file, JSON, database tables) and it's the
implementation's responsibility to persist that information down to

the storage level while doing any serialization/de-serialisation
needed.

Configuration

Any service extending this base class can be configured through the
configuration service by setting following keys in "sql/services/
businessCatalog" section, the list of available configuration options

can be found on the canfiguration page.

logical isRegistrationAllowed (path as character)

Returns true if classes - procedures and views - from given path can
be registered into the business catalog. Only paths, and sub-paths,
from configured CLASSPATH can be registered.

void loadCatalog ()

Abstract method for loading business catalog information from
persistence layer into internal temp-tables (protected so can be
accessed from classes extending this base class).

void registerAll ()

Registers all classes implementing IStoredProcedure or IView into
default catalog - the currently selected database - by recursively
register every folder from CLASSPATH.

void registerAll (catalog as character)

Registers all classes implementing IStoredProcedure or IView into
given catalog by recursively register every folder from CLASSPATH.

void registerFolder (path as character)

Registers all classes implementing IStaoredProcedure or IView from
given folder into default catalog - the currently selected database.
The folder should be under CLASSPATH in order to be able to be
registered.

void registerAll (path as character, catalog as
character)

Registers all classes implementing IStoredProcedure or IView from
given folder into specific catalog. The folder should be under
CLASSPATH in order to be able to be registered.

void registerProcedure (className as character, catalog
as character)

Registers the class into given catalog proving it's implementing a
business service - the class must implement the StoredProcedure
interface. The same business service can be registered on more than
one catalog, though the business service name need to be unique for
the catalog. The business service name is not the name of the class
that implement it but the name under which the service register itself
- the name returned by the business service meta data instance.

void registerProcedure (className as character)

Registers the class implementing IStoredProcedure into default
catalog - the currently selected database, class nhame should be fully
qualified and available in CLASSPATH.

void registerProcedure (businessService as
IStoredProcedure, catalog as character)

Registers the business service into given catalog, if autoSave is set
to true the catalog will be automatically saved if registration
succeeds.

void registerProcedure (businessService as
IStoredProcedure)

Registers the business service into default catalog - the currently
selected database.

void registerView (className as character)

Registers the class implementing I1View into default catalog - the
currently selected database, class name should be fully qualified and
available in CLASSPATH.

void registerView (businessView as IView, catalog as
character)

Registers the business view into given catalog, if autoSave is set to
true the catalog will be automatically saved if registration succeeds.

void registerView (businessView as IView)

Registers the business view into default catalog - the currently
selected database.

void saveCatalog ()

Abstract method to save the business catalog from internal temp-
tables to the persistence layer.

void unregisterProcedure (className as character, catalog
as character)

Remove a registered class from given catalog, the input parameter is
actually the class type name that is implementing a business service
not the business service name.

void unregisterProcedure (className as character)

Remove a registered class from default catalog - the currently
selected database.

void unregisterProcedure (businessService as

IStaoredProcedure, catalog as character)
Remove the registered business service from given catalog.

void unregisterProcedure (businessService as

IStoredProcedure)
Remove the business service from default catalog - the currently
selected database.

void unregisterView (className as character, catalog as
character)

Remove a registered class from given catalog, the input parameter is
actually the class type name that is implementing the business view
not the business view name.

void unregisterView (className as character)

Remove a registered class from default catalog - the currently
selected database.

void unregisterView (businessView as IView, catalog as
character)

Remove the registered business view from given catalog.

void unregisterView (businessView as IView)

Remove the business view from default catalog - the currently
selected database.

Configuration

Business catalog configuration is done through the common
configuration service in a dedicated configuration section "/sqgl/
services/businessCatalog”.

The following configuration options are available:

classPath

Default is empty, this should be updated with the list of
folders that contains business services that can be
registered. The list is comma separated and each folder
path need to be relative to the Application Server PROPATH.
If the business catalog registration service is set to work in
auto refresh mode the number of entries in the class path
can affect the performance of registration process.

For example if the application PROPATH include two
folders: /usr/app/crm and /usr/app/erp and the business
logic services to be registered are located in /usr/app/crm/
sql and /usr/app/erp/sql then a single entry need to be
added in class path which is 'sql'.

autoSave

Default is false, this direct the business catalog registration
service to update the business catalog persistence storage
each time the business catalog is updated - new procedure/
view registered, updated or deleted (de-register).

If this is set to false then all changes made to the business
catalog that were not saved manually will be lost when the
Application Server is restarted.

autoRefresh

Default is false, this can be used in development
environment where more business procedures/views are
added or gets updated very often and cause the business
catalog registration service to auto register when requested.
When a request is made for a business procedure which is
not yet registered in the catalog then the registration
service will search for the class that implements the
requested business procedure through all class path and if
found it register it for further use.

If is set to false then when a request is made for a business
procedure which is not registered in the catalog an error
condition is raised, although the class that implements the

business procedure might exist the registration service does
not look for it.

File Catalog

| ro.acorn. jdbc.service.catalog.FileCatalog |

The business catalog is stored in a plain XML file that is loaded at
start-up and can be updated manually or automatically when the
business catalog is updated, new services are registered or old
services removed or updated.

In order for a business procedure or view to be registered the class
need to be located somewhere in the class path configured for the
business catalog, there is also an auto refresh feature that if set will
allow auto registration of services on request proven the class that
implements the requested service is found in the business catalog
class path.

Configuration

Catalog service configuration options can be set in businessCatalog
service configuration section - "sgl/services/businessCatalog"

Key name Description Default
catalogFile XML file where catalog is stored. "ro/acor
encryptionMode If the information is to be stored encrypted set "none"

this to any valid encryption algorithm

(symmetric-encryption-algorithm).
encryptionMode If encryption is used this is the password to be

used to encrypt catalog information when saved.

inherits CatalogBase

The following public methods of the business catalog registration
service can be used.

void loadCatalog (filePath as character)
Loads the business catalog from given catalog file.

void loadCatalog ()

Loads the business catalog from current XML catalog file, default XML
catalog file is "ro/acorn/jdbc/config/catalog.xml",

void saveCatalog (filePath as character)
Saves the business catalog to given XML catalog file.

void saveCatalog ()

Saves the business catalog into current XML catalog file.
Configuration

The configuration service used by the framework is using XPATH over
a plain XML configuration file. Although there is a configuration
service interface definition IConfiguration for now the framework
only provides one implementation - the XML based configuration
service. If the 4GL application already have a configuration service -
that might store information in a database for instance - a wrapper
to that can be created by implementing the required interface. Still,
at start-up the XML configuration file will be used and if an alternate
configuration service is configured then the framework's default
service will be swapped with the alternate one.

The configuration service can be retrieved from the controller object
and it's method can be called directly, however for framework
services is better to implement the configurable interface
IConfigurable which will make the controller call the load
configuration method with the appropriate configuration service when
loading the service manager.

IConfiguration

ro.acorn. jdbc.service.IConfiguration

This is the interface that any configuration service manager must
implement in order to be used as such by the framework.

void close ()

Close the currently loaded configuration content, no configuration
context is available until another bundle is loaded.

character getProperty (key as character)
Retrieve the value of given configuration key, the key should be of a
form of an XML fully-qualified path starting from the configuration
root element:

/root/section/[/section...]/key

If the key is not found then null is returned, depending on the
configuration service implementation the key name might be case
sensitive or not.

character getProperty (key as character, default as
character)

Retrieve the value of given configuration key, if key isn't found the
default value is returned.

void load (url as character)
Load the configuration content from given URL, this can be a plain

file-system path for file based configuration services or any other URL
format used by the specific service manager to locate the resource
bundle to load.

void save (url as character)

Save the current configuration content into given URL, this can be a
plain file-system path for file based configuration services or any
other URL format used by the specific service manager to locate the
resource bundle to save into.

character setProperty (key as character, value as
character)

Set the value of given configuration key, if key already existed the
previous key value is returned, null otherwise.

IConfigurable

| ro.acorn.jdbc.service.IConfigurable |

This is the interface that need to be implemented by any object that
can gets it's configuration from a configuration service manager. It is
used basically by the framework service managers that retrieve their
configuration options from the framework's core configuration service.

void configure (configService as IConfiguration,
configSection as character)

The configurable object sets default values for any configurable
properties by loading the corresponding key values from given
configuration service manager and the configuration section specified.
An object might choose to look for configuration values only in the
provided section, look on specific section or all sections under it or
even search for them through the whole configuration tree.

XML Configuration

| ro.acorn. jdbc.service.configuration.XMLConfiguration |

The default configuration service manager provided uses a plain XML
file as persistence storage.

void load (xmlFile as character)
Load the configuration content from given XML file.

void save (xmlFile as character)
Save the current configuration content into given XML file.

void setCaseInsensitive (caselnsensitive as logical)

Set the case sensitive option to be used when looking-up
configuration key names, if set to true a key is considered to be the
same even if it's name casing differs - the initial value is true, case

insensitive keys.
Logging

The logging service is used by the framework services or from the
stored procedures to log additional information.

Currently there is a default logging service provided by the framework
that uses the log-manager object for logging messages into the
application server's agent log file, a custom loggin service can be
creating by implementing the ILogger interface.

For service managers implementing the IConfigurable interface the
configuration section used by default is: /sgl/services/logging,

ILogger

| ro.acorn. jdbc.service.logging. ILogger

This is the interface that any logging service manager must
implement in order to be used as such by the framework.

void logDebug (message as character)

Log the respective debug message, proven the log level is set to
include those messages.

void logError (message as character, error as
Progress.Lang.Error)

Log the respective error message plus details about the exception
that caused the error if any provided, error messages should be
recorded regardless of the log level.

void logInfo (message as character)

Log the respective informative message, proven the log level is set
to include those messages.

void logWarn (message as character, error as
Progress.Lang.Error)

Log the respective warning message plus details about the exception
that caused the error if any provided, proven the log level is set to
include those messages.

LogManager Logger

| ro.acorn. jdbc.service.logging.LogManagerLogger |

The default logging service manager provided uses the log-manager
object to log messages into application server's log files, implements

all methods of ILogger interface and is configurable.

integer getLoglevel ()

Returns the current log level, initial log level is errors only unless
changed through configuration using property /sql/services/
logging/logLevel - valid values: ERROR, WARN, INFO, DEBUG.

void setLoglevel (logLevel as integer)

Set the log level, must be greater than zero else current log level
remains unchanged.

Business View

| ro.acorn. jdbc.sql.IView

In order to be able to expose the business logic as a service this
simple interface need to be implemented by each class that is going
to be registered in the business logic catalog. If your business logic
supports pagination then is better to also implement the
IBufferedProcedure interface.

ProcedureMetaData getMetaData

The business logic service need to be able to self-describe itself in
order for the business catalog registration service to register it.

The method should return a valid instance of PracedureMetaData
object that can be obtained by simply calling the constructor
providing the procedure name which is mandatory and optionally the
description of the business logic service as it's going to appear on
business catalog. If the stored procedure does not return a valid
instance of procedure meta data or if the service name meta data
information was not set then the procedure fails to be registered into
the business catalog.

If the business logic service accepts parameters (input, input-output
or output), returns a value or a result set there are methods in
ProcedureMetaData object to describe those parameters as well.
Although this is not mandatory it can provide more details on how
the business logic service (stored procedure) need to be called and
what the result looks like.

integer executeProcedure
(callStatement as CallableStatement,
output resultSet as handle)

This method is called when a store procedure call statement is made
from the JDBC client; normally this should call some service of
existing application business logic and depending on input
parameters received it can set output parameters and return a
primitive data type, a temp-table or dataset handle.

The method have two parameters, first is an instance of
CallableStatement that can be used to retrieve the input parameters
sent from JDBC client and set values of output parameters; last
parameter of the method is an output handle to a temp-table or a
dataset containing the result set(s).

Since the output parameter can be either a temp-table or dataset a
simple handle is used instead of table-handle or dataset-handle, this
means that the data structure must still be valid (not be deleted if
dynamically created) when the method ends. It is expected however
that, if dynamic, the result data structure to be deleted by the stored
procedure's destructor in order to avoid memory leaks.

Standard JDBC does allows for multiple result sets and the ABL JDBC
driver supports multiple open result sets.

View Meta Data

| ro.acorn. jdbc.sql.metadata.ViewMetaData |

This is a way for a business view that is going to be registered in the
business logic catalog to describe itself by providing some useful
meta-data information like description and data structure information
- columns and indexes.

ViewMetaData (viewName as character,
viewDescription as character,
table-handle viewResultset)

Public constructor which creates a meta data object for the given
business view name having an optional view description while the
table handle defines the result set data structure. The view name
need to be unique for the catalog in order to be able to registerit in
the business catalog.

ViewColumnMetaData getIndex (columnNum as integer)
Returns the meta-data information about the business view column.

character getDescription ()

Returns the business view description as is going to be shown in
business catalog.

ViewIndexMetaData getIndex (indexNum as integer)
Returns the meta-data information about the business view index.

character getName ()

Returns the business view name as is going to be shown in business
catalog.

integer getNumColumns ()

Returns the number of columns from the business view result set.

integer getNumIndexes ()

Returns the number of indexes defined on the business view result
set.

View Column Meta Data

| ro.acorn. jdbc.sql.metadata.ViewColumnMetaData |

Used to describe each business view column, this is only used by the
framework when a business view is registered into the business
catalog.

ViewColumnMetaData
(name as character, dataType as character,
description as character, nullable as logical,
default as character, decimals as integer, width as
integer)

Public constructor which creates a meta data object for a view
column.

- name is mandatory

- data type is the Progress data type (translated to SQL
equivalent by the DatabaseMetaData)

- description is optional but is preferable to be filled in

- nullable, if true the field can have a null value

- default, field initial default value

- decimals, number of decimal places for decimal fields only
- sgl width, optional (inferred based on data type if not set)

character getDataType ()
Returns the business view field data type (4GL native data type).

integer getDecimals ()

Returns the number of decimal places used for the business view
field, for non decimal fields returns O.

character getDefault ()
Returns the default initial value of the business view field.

character getDescription ()

Returns the business view field description as is going to be shown in
business catalog.

character getName ()

Returns the business view index name as is going to be shown in
business catalog.

integer getWidth ()

Returns the SQL width of the business view field.

logical isNullable ()
Returns true if business view field value can be null.

View Index Meta Data

| ro.acorn. jdbc.sql .metadata.ViewIndexMetaData

Used to describe each business view index, this is only used by the
framework when a business view is registered into the business
catalog.

ViewIndexMetaData (indexInformation as character)

Public constructor which creates a meta data object for a view index,
the only input parameter required is a comma separated index
information - as returned by index-information method on a table
buffer.

character getFieldName (columnNum as integer)
Returns the name of field at given position in index's fields list.

character getName ()

Returns the business view index name as is going to be shown in
business catalog.

integer getNumFields ()
Returns the number of fields on the business view index fields list.

logical isFieldDescending (columnNum as integer)

Returns true if field at given position in index's fields list is sorted in
a descending order.

logical isPrimary ()
Returns true if business view's index is primary.

logical isUnique ()
Returns true if business view's index is unique.

Buffered View

ro.acorn. jdbc.sql.IBufferedView

Business views that supports pagination need to implement the
IBufferedView interface, in which case the selectData method is
called each time the client request another data page until

hasMoreData returns false - the view instance need to keep track of
last page retrieved as the SelectStatement passed is always the
same as the one initially passed when the method was first called.

As with the business procedures, the fetch size set on the select
statement can be interpreted as only an indication and also the view
might choose to set hard limit on maximum number of records
retrieved in a data page but if the client request all records (page
size set to zero) it will not ask for more data even if the business
logic returns less than the total number of records. It is
recommended to better throw an error if number of records that are
to be returned exceeds the hard limit instead of sending incomplete
result set, that way the client is at least aware of the problem and
might try to retrieve the records using a lower page size.

logical hasMoreData ()

Returns true if there is more data to be retrieved.

	Introduction
	Welcome
	How can be used
	What's new

	Getting Started
	System requirements
	License
	Where to Buy
	Evaluation

	Getting help

	Reference Help
	Client Data Access
	Deployment
	Connection
	Database Meta Data
	Data Manipulation
	Business Logic Call
	Dynamic Business Logic Call
	ABL
	For Each
	Create
	Update
	Delete

	SQL
	Select
	Insert
	Update
	Delete

	Business Logic
	Deployment
	Controller
	Stored Procedure
	Procedure Meta Data
	Parameter Meta Data
	Buffered Procedure

	Statements
	Statement
	Callable Statement
	Select Statement
	SQLState
	SQLException
	SQLWarning

	Services
	Authentication
	IAuthentication
	ClientPrincipal
	Authentication Base
	Anonymous Authentication
	Database Authentication
	Table Authentication

	Authorization
	IAuthorization

	Business Catalog
	ICatalog
	Catalog Base
	Configuration

	File Catalog

	Configuration
	IConfiguration
	IConfigurable
	XML Configuration

	Logging
	ILogger
	LogManager Logger

	Business View
	View Meta Data
	View Column Meta Data
	View Index Meta Data
	Buffered View

	Acorn IT

